Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
Irkutsk, Russian Federation
The magnetogram inversion technique (MIT), developed at ISTP SB RAS more than forty years ago, has been used until recently only in the Northern Hemisphere. In recent years, MIT has been improved and extended to make instantaneous calculations of 2D distributions of electric fields, horizontal and field-aligned currents in two polar ionospheres. The calculations were carried out based on one-minute ground-based geomagnetic measurements from the worldwide network of stations in both hemispheres (SuperMAG). In this paper, this extended technique is used in the approximation of uniform ionospheric conductance and is applied for the first time to calculations of equivalent and field-aligned currents in two hemispheres through the example of the August 17, 2001 geomagnetic storm. We have obtained the main and essential result: the advanced MIT-ISTP can calculate large-scale distributions of ionospheric convection and FACs in the Northern (N) and Southern (S) polar ionospheres with a high degree of expected hemispheric similarity between these distributions. Using the said event as an example, we have established that the equivalent and field-aligned currents obtained with the advanced technique exhibit the expected dynamics of auroral electrojets and polar caps in two hemispheres. Hall current intensities in polar caps and auroral electrojets, calculated from the equivalent current function, change fairly synchronously in the N and S hemispheres throughout the magnetic storm. Both (westward and eastward) electrojets of the N hemisphere are markedly more intense than respective electrojets of the S hemisphere, and the Hall current in the north polar cap is almost twice as intense as that in the south one. This interhemispheric asymmetry is likely to be due to seasonal conductance variations, which is implicitly contained in the current function. From FAC distributions we determine auroral oval boundaries and calculate magnetic fluxes through the polar caps in the N and S hemispheres. These magnetic fluxes coincide with an accuracy of about 5 % and change almost synchronously during the magnetic storm. In the N hemisphere, the magnetic flux in the dawn polar cap is more intense that that in the dusk one, and vice versa in the S hemisphere. These asymmetries (dawn–dusk and interhemispheric) in the polar caps are consistent with the theory of reconnection for IMF By>0 and with satellite images of auroral ovals; both of these asymmetries decrease during the substorm expansion phase.
current function, ionospheric convection, polar cap, auroral electrojets, field-aligned currents, magnetic storms and substorms, dawn–dusk asymmetry, interhemispheric asymmetry
1. Akasofu S.I. Physics of Magnetospheric Substorms. Dordrecht, Holland, Springer Netherlands, 1977, 617 p. DOI:https://doi.org/10.1007/978-94-010-1164-8_1.
2. Axford W.I. Viscous interaction between the solar wind and the Earth’s magnetosphere. Planet. Space Sci. 1964, vol. 12, no. 1, pp. 45-53. DOI:https://doi.org/10.1016/0032-0633(64)90067-4.
3. Axford W.I., Hines C.O. A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 1961, vol. 39, no. 10, pp. 1433-1464. DOI:https://doi.org/10.1139/p61-172.
4. Bazarzhapov A.D., Matveev M.I., Mishin V.M. Geomagnitnye variatsii i buri [Geomagnetic Variations and Storms]. Novosibirsk, U.S.S.R., Nauka Publ. 1979, 248 p. (In Russian).
5. Boström R. Ionosphere-magnetosphere coupling. Magne-tospheric Physics. Ed. by B.M. McCormac, D. Reidel. Publishing Company, Dordrecht-Holland, 1974, pp. 45-59.
6. Cattell C., Dombeck J., Preiwisch A., Thaller S., Vo P., Wilson III L.B., et al. Observations of a high-latitude stable electron auroral emission at ~16 MLT during a large substorm. J. Geophys. Res. 2011, vol. 116, no. A7, A07215. DOI:https://doi.org/10.1029/2010ja016132.
7. Chapman S., Bartels J. Geomagnetism. Vol. 1-2. Great Britain, Oxford University Press, 1940, 1125 p.
8. Coley W.R. Spatial relationship of field-aligned currents, electron precipitation, and plasma convection in the auroral oval. J. Geophys. Res. 1983, vol. 88, no. A9, pp. 7131-7141. DOI:https://doi.org/10.1029/JA088iA09p07131.
9. Cowley S.W.H. Magnetospheric asymmetries associated with the y-component of the IMF. Planet. Space Sci. 1981, vol. 29, no. 1, pp. 79-96. DOI:https://doi.org/10.1016/0032-0633(81)90141-0.
10. Cowley S.W.H., Lockwood M. Excitation and decay of solar-wind driven flows in the magnetosphere-ionosphere system. Ann. Geophys. 1992, vol. 10, pp. 103-115.
11. Coxon J.C., Milan S.E., Anderson B.J. A Review of Birkeland Current Research Using AMPERE. Electric Currents in Geospace and Beyond. Ed. by A. Keiling et al. Hoboken, New Jersey, USA, Wiley-AGU, Geophysical Monograph Ser., 2018, vol. 235, pp. 259-278. DOI:https://doi.org/10.1002/9781119324522.ch16.
12. Deng Y., Lu G., Kwak Y.-S., Sutton E., Forbes J., Solomon S. Reversed ionospheric convections during the November 2004 storm: Impact on the upper atmosphere. J. Geophys. Res. 2009, vol. 114, no. A7, A07313. DOI:https://doi.org/10.1029/2008ja013793.
13. Dungey J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, vol. 6, no. 2, pp. 47-48. DOI:https://doi.org/10.1103/PhysRevLett.6.47.
14. Fukushima N. Electric current systems for polar substorms and their magnetic effect below and above the ionosphere. Radio Sci. 1971, vol. 6, no. 2, pp. 269-275. DOI:https://doi.org/10.1029/RS006i002p00269.
15. Fukushima N. Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere. Report of Ionosphere and Space Research in Japan. 1976, vol. 30, no. 1-2, pp. 35-40.
16. Gjerloev J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, vol. 117, no. A9, A09213. DOI: 10.1029/ 2012ja017683.
17. Haaland S., Runov A., Forsyth C. (Eds.). Dawn-Dusk Asymmetries in Planetary Plasma Environments. Hoboken, New Jersey, USA, Wiley-AGU, 2017, 361 p. (Geophysical Monograph Ser., vol. 230).
18. Heelis R.A. Advances in Understanding Ionospheric Convection at High Latitudes. Magnetosphere-Ionosphere Coupling in the Solar System. John Wiley & Sons, Inc., 2016, pp. 49-59. DOI:https://doi.org/10.1002/9781119066880.ch4.
19. Heikkila W.J. Earth’s Magnetosphere: Formed by the Low-Latitude Boundary Layer. Amsterdam, Elsevier Science, 2011, 536 p. DOI:https://doi.org/10.1016/B978-0-444-52864-3.10012-7.
20. Iijima T., Potemra T.A. Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. 1978, vol. 83, no. A2, pp. 599-615. DOI:https://doi.org/10.1029/JA083iA02p 00599.
21. Kamide Y., Matsushita S. Simulation studies of ionospheric electric fields and currents in relation to field-aligned currents. 1. Quiet periods. J. Geophys. Res. 1979, vol. 84, no. A8, pp. 4083-4098. DOI:https://doi.org/10.1029/JA084iA08p04083.
22. Kamide Y., Richmond A.D. Ionospheric conductivity dependence of electric fields and currents estimated from ground magnetic observations. J. Geophys. Res. 1982, vol. 87, no. A10, pp. 8331-8337. DOI:https://doi.org/10.1029/JA087iA10p08331.
23. Kamide Y., Baumjohann W. Magnetosphere-ionosphere coupling. Berlin, Springer Berlin Heidelberg, 1993, 178 p. DOI:https://doi.org/10.1007/978-3-642-50062-6.
24. Karavaev Y.A., Mishin V.M., Pu Z. Events of 17 August 2001. I. Development of the loading-unloading phase during the storm. Solar-Terr. Phys. 2011, no. 19, pp. 55-61. (In Russian).
25. Karavaev Y.A., Mishin V.M., Lunyushkin S.B., Sukhbaatar U., Moiseev A.V., Shirapov D.S. Comparison of the boundaries and areas of the polar cap, determined on the basis of magnetogram inversion technique, images of auroras and MHD modeling. Physics of Auroral Phenomena: Proc. XXXVI Annual Seminar, Apatity. Ed. by A.G. Yahnin. Kola Science Centre, Russian Academy of Science, 2013, pp. 29-32. (In Russian).
26. Kern J.W. Analysis of polar magnetic storms. J. Geomag. Geoelectr. 1966, vol. 18, no. 2, pp. 125-131. DOI: 10.5636/ jgg.18.125.
27. Kondratyev A.B., Penskikh Y.V., Lunyushkin S.B. Automated method for determining auroral oval boundaries, based on the magnetogram inversion technique. Baikal Young Scientists’ International School on Fundamental Physics: Proc. of XV Conference of Young Scientists “The Interaction of Fields and Radiation with Matter”. Irkutsk, 11-16 September 2017. Ed. by I.P. Yakovleva. Irkutsk, ISTP SB RAS, 2017, pp. 107-112. (In Russian).
28. Koskinen H.E.J. Physics of Space Storms: From the Solar Surface to the Earth. Dordrecht, Holland, Springer Berlin Heidelberg, 2011, 419 p. DOI:https://doi.org/10.1007/978-3-642-00319-6.
29. Laundal K.M., Haaland S.E., Lehtinen N., Gjerloev J.W., Østgaard N., Tenfjord P., et al. Birkeland current effects on high-latitude ground magnetic field perturbations. Geophys. Res. Lett. 2015, vol. 42, no. 18, pp. 7248-7254. DOI:https://doi.org/10.1002/2015gl065776.
30. Lee L.C., Roederer J.G. Solar wind energy transfer through the magnetopause of an open magnetosphere. J. Geophys. Res. 1982, vol. 87, no. A3, pp. 1439-1444. DOI:https://doi.org/10.1029/JA087i A03p01439.
31. Leonovich A.S., Mishin V.V., Cao J.B. Penetration of magnetosonic waves into the magnetosphere: influence of a transition layer. Ann. Geophys. 2003, vol. 21, no. 5, pp. 1083-1093. DOI:https://doi.org/10.5194/angeo-21-1083-2003.
32. Leontyev S.V., Lyatsky W.B. Electric field and currents connected with y-component of interplanetary magnetic field. Planet. Space Sci. 1974, vol. 22, no. 5, pp. 811-819. DOI:https://doi.org/10.1016/0032-0633(74)90151-2.
33. Levitin A.E., Afonina R.G., Belov B.A., Feldstein Y.I. Geomagnetic variation and field-aligned currents at northern high-latitudes, and their relations to the solar wind parameters. Phil. Trans. R. Soc. Lond. A. 1982, vol. 304, no. 1484, pp. 253-301. DOI:https://doi.org/10.1098/rsta.1982.0013.
34. Longley W., Reiff P., Daou A.G., Hairston M. Conjugate aurora location during a strong IMF by storm. Dawn-Dusk Asymmetries in Planetary Plasma Environments. John Wiley & Sons Inc., 2017, pp. 285-294. DOI:https://doi.org/10.1002/9781119216346.ch22.
35. Lu G., Richmond AD, Emery BA, Reiff PH, de la Beaujardière O., Rich F. J., et al. Interhemispheric asymmetry of the high-latitude ionospheric convection pattern. J. Geophys. Res. 1994, vol. 99, no. A4, pp. 6491-6510. DOI:https://doi.org/10.1029/93ja03441.
36. Lu G., Li W.H., Raeder J., Deng Y., Rich F., Ober D., et al. Reversed two-cell convection in the Northern and Southern hemispheres during northward interplanetary magnetic field. J. Geophys. Res. 2011, vol. 116, no. A12, A12237. DOI:https://doi.org/10.1029/2011ja017043.
37. Lunyushkin S.B., Penskikh Y.V. Diagnostics of the auroral oval boundaries on the basis of the magnetogram inversion technique. Solar-Terr. Phys. 2019, vol. 5, no. 2, pp. 97-113. DOI:https://doi.org/10.12737/szf-51201907.
38. Matveev M.I., Shpynev G.B. Determination of electric fields and field-aligned currents in the magnetosphere on data of geomagnetic variations (high-latitude region). Issledova-niya po geomagnetizmu, aeronomii i fizike Solntsa. [Research on Geomagnetism, Aeronomy and Solar Physics]. 1975, iss. 36, pp. 34-39. (In Russian).
39. Milan S.E., Evans T.A., Hubert B. Average auroral configuration parameterized by geomagnetic activity and solar wind conditions. Ann. Geophys. 2010, vol. 28, no. 4, pp. 1003-1012. DOI:https://doi.org/10.5194/angeo-28-1003-2010.
40. Milan S.E., Clausen L.B.N., Coxon J.C., Carter J.A., Walach M.-T., Laundal K., Østgaard N., Tenfjord P., Reistad J., Snekvik K., Korth H., Anderson B.J. Overview of solar wind - magnetosphere - ionosphere - atmosphere coupling and the generation of magnetospheric currents. Space Sci. Rev. 2017, vol. 206, no. 1, pp. 547-573. DOI:https://doi.org/10.1007/s11214-017-0333-0.
41. Mishin V.M. The magnetogram inversion technique and some applications. Space Sci Rev. 1990, vol. 53, no. 1-2, pp. 83-163. DOI:https://doi.org/10.1007/bf00217429.
42. Mishin V.V. Velocity boundary layers in the distant geotail and the Kelvin-Helmholtz instability. Planet. Space Sci. 2005, vol. 53, no. 1-3, pp. 157-160. DOI:https://doi.org/10.1016/j.pss.2004.09.040.
43. Mishin V.M., Bazarzhapov A.D. Selection of the spectrum of Legendre polynomials approximating the observed Sq-field. Geomagnetic Res. 1966, no. 8, pp. 23-30. (In Russian).
44. Mishin V.M., Popov G.V. On field-aligned currents in the magnetosphere. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. [Research on Geomagnetism, Aeronomy and Solar Physics]. 1969, iss. 8, pp. 3-28. (In Russian).
45. Mishin V.M., Shpynev G.B., Bazarshapov A.D., Shirapov D.S. Electric field and currents in the nonuniformly-conductive high-latitude ionosphere. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. [Research on Geomagnetism, Aeronomy and Solar Physics]. 1981, iss. 53, pp. 116-133. (In Russian).
46. Mishin V.M., Saifudinova T.I., Shirapov D.S., Lunyushkin S.B., Shelomentzev V.V. The analysis of CDAW-6 substorms of 22 March 1979. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. [Research on Geomagnetism, Aeronomy and Solar Physics]. 1984, iss. 68, pp. 151-201. (In Russian).
47. Mishin V.M., Lunyushkin S.B., Shirapov D.S., Baumjohann W. A new method for generating instantaneous ionospheric conductivity models using ground-based magnetic data. Planet. Space Sci. 1986, vol. 34, no. 8, pp. 713-722. DOI:https://doi.org/10.1016/0032-0633(86)90125-x.
48. Mishin V.M., Bazarzhapov A.D., Saifudinova T.I., Lunyushkin S.B., Shirapov D.S., Woch J., et al. Different methods to determine the polar cap area. J. Geomag. Geoelectr. 1992, vol. 44, no. 12, pp. 1207-1214. DOI:https://doi.org/10.5636/jgg.44.1207.
49. Mishin V.M., Block L.P., Bazarzhapov A.D., Saifudinova T.I., Lunvushkin S.B., Shirapo D.Sh., et al. A study of the CDAW 9C substorm of May 3, 1986, using magnetograrn inversion technique 2, and a substorm scenario with two active phases. J. Geophys. Res. 1997, vol. 102, no. A9, pp. 19845-19859. DOI:https://doi.org/10.1029/97ja00154.
50. Mishin V.V., Mishin V.M., Pu Z., Lunyushkin S.B., Sapronova L.A., Sukhbaatar U., Baishev D.G. Old tail lobes effect on the solar wind - magnetosphere energy transport for the 27 August 2001 substorm. Adv. Space Res. 2014, vol. 54, no. 12, pp. 2540-2548. DOI:https://doi.org/10.1016/j.asr.2014.09.013.
51. Østgaard N., Reistad J.P., Tenfjord P., Laundal K.M., Rexer T., Haaland S.E., et al. The asymmetric geospace as displayed during the geomagnetic storm on August 17, 2001. Ann. Geophys. Discuss. 2018, vol. 36, pp. 1577-1596. DOI:https://doi.org/10.5194/angeo-2018-65.
52. Papitashvili V.O., Rich F.J. High-latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction. J. Geophys. Res. 2002, vol. 107, no. A8, p. 1198. DOI:https://doi.org/10.1029/2001ja 000264.
53. Papitashvili V.O., Belov B.A., Faermark D.S., Feldstein Y.I., Golyshev S.A., Gromova L.I., Levitin A.E. Electric potential patterns in the northern and southern polar regions parameterized by the interplanetary magnetic field. J. Geophys. Res. 1994, vol. 99, no. A7, pp. 13251-13262. DOI:https://doi.org/10.1029/94ja00822.
54. Pettigrew E.D., Shepherd S.G., Ruohoniemi J.M. Climatological patterns of high-latitude convection in the Northern and Southern hemispheres: Dipole tilt dependencies and interhemispheric comparisons. J. Geophys. Res. 2010, vol. 115, no. A7, A07305. DOI:https://doi.org/10.1029/2009JA014956.
55. Reiff P.H. Models of auroral-zone conductances. Magnetospheric Currents. Ed. by T.A. Potemra. Washington, DC, AGU, 1984, pp. 180-191. DOI:https://doi.org/10.1029/GM028p0180.
56. Richmond A.D., Kamide Y. Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique. J. Geophys. Res. 1988, vol. 93, no. A6, pp. 5741-5759. DOI:https://doi.org/10.1029/JA093iA06p05741.
57. Ridley A.J., Lu G., Clauer C.R., Papitashvili V.O. A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. J. Geophys. Res. 1998, vol. 103, no. A3, pp. 4023-4039. DOI: 10.1029/ 97ja03328.
58. Shirapov D.S., Mishin V.M., Bazarzhapov A.D., Saifudinova T.I. Adapted dynamic model of ionospheric conductivity. Geomagnetism and Aeronomy. 2000, vol. 40, no. 4, pp. 471-475.
59. Sun W., Lee L.C., Kamide Y., Akasofu S.I. An improvement of the Kamide-Richmond-Matsushita scheme for the estimation of the three-dimensional current system. J. Geophys. Res. 1985, vol. 90, no. A7, pp. 6469-6474. DOI:https://doi.org/10.1029/JA090iA07p06469.
60. Tenfjord P., Østgaard N., Snekvik K., Laundal K.M., Reistad J.P., Haaland S., Milan S.E. How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. J. Geophys. Res:. Space Phys. 2015, vol. 120, no. 11, pp. 9368-9384. DOI:https://doi.org/10.1002/2015ja021579.
61. Tenfjord P., Østgaard N., Strangeway R., Haaland S., Snekvik K., Laundal K.M., Reistad J.P., Milan S.E. Magnetospheric response and reconfiguration times following IMF By reversals. J. Geophys. Res.: Space Phys. 2017, vol. 122, no. 1, pp. 417-431. DOI:https://doi.org/10.1002/2016ja023018.
62. Weimer D.R. Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. J. Geophys. Res. 2001, vol. 106, no. A7, pp. 12889-12902. DOI:https://doi.org/10.1029/2000ja000295.
63. Weimer D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. 2005, vol. 110, no. A5, A05306. DOI:https://doi.org/10.1029/2004ja010884.
64. URL: https://omniweb.gsfc.nasa.gov (accessed December 22, 2018).
65. URL: http://wdc.kugi.kyoto-u.ac.jp/index.html (accessed December 22, 2018).
66. URL: http://supermag.jhuapl.edu (accessed December 22, 2018).