MODELING OF WAVE DEFORMATION LOADING OF ALUMINUM-MAGNESIUM ALLOYS
Abstract and keywords
Abstract (English):
V rezul'tate issledovaniy ustanovlena oblast' tehnologicheskih parametrov (energiya udara, forma i razmer instrumenta), obespechivayuschih naibol'shuyu glubinu i stepen' uprochneniya pri nagruzhenii obrazcov iz alyuminievo-magnievyh splavov (AMg).

Keywords:
volna deformacii, nagruzhenie, indentor, energiya udara, konechnoelementnoe modelirovanie
Text
Publication text (PDF): Read Download

Введение

В современном машиностроении высокие требования предъявляются к параметрам качества поверхностного слоя изделий авиакосмической, военной, автомобильной и других отраслей промышленности. Применение новых конструкционных материалов, обладающих как преимуществами, так и недостатками, требует создания усовершенствованных технологий обработки. Так, все более широко используются алюминиевые сплавы, в частности алюминиево-магниевой группы (АМг). Обладая малым удельным весом и средними механическими характеристиками, АМг-сплавы достаточно успешно применяются в военной и авиакосмической технике. В связи с этим снижается общая масса изделия и повышаются выходные энергетические (мощностные) показатели. Однако невысокие по сравнению со стальными материалами механические характеристики не всегда обеспечивают надежность конструкции в процессе эксплуатации. Так, при работе в условиях высоких ударных нагрузок возможен выход из строя одного из узлов изделия по причине разрушения одной из деталей.

Решение задачи нехватки запаса механических характеристик заключается во введении в технологический процесс изготовления упрочняющей обработки деталей поверхностным пластическим деформированием (ППД). Выбор технологии ППД относительно повышения параметров качества изделий из сплавов АМг-группы сделан на основании особенностей данных материалов. АМг-сплавы относятся к деформируемым термонеупрочняемым сплавам, что ограничивает применение таких широко распространенных способов, как термическая и химико-термическая обработка (ТО и ХТО). Технология ППД в этом случае является наиболее перспективной. ППД отличается невысокой энергоемкостью процесса, обеспечивает достаточно высокую стабильность размеров и механических свойств. Существующие способы ППД подразделяются на две группы: статические (обкатывание, выглаживание и др.) и динамические (чеканка, дробеструйная, вибрационная, ультразвуковая обработка и др.). Но одним из наиболее эффективных способов, позволяющих повысить прочностные характеристики в результате создания поверхностного упрочненного слоя глубиной до 6-8 мм, является обработка волной деформации [1]. Особенность данной обработки заключается в суммировании эффекта упрочнения от сочетания динамического и статического деформационных воздействий. В процессе волнового упрочнения через статически поджатый инструмент происходит динамическое воздействие на обрабатываемую поверхность с требуемой частотой и энергией удара. В результате постоянного контакта инструмента с заготовкой в очаге деформации генерируется пролонгированный ударный импульс, формой и амплитудой которого можно управлять.

Проведенные ранее исследования [1; 2] по упрочняющей обработке волной деформации позволили определить рациональные технологические и конструктивные параметры, обеспечивающие требуемое качество изделий, изготовленных из различных марок сталей (сталь 45, 30ХГСА, 9ХС, 110Г13Л и др.). Исследования по упрочняющей обработке волной деформации АМг-сплавов ранее не проводились. В связи с этим возникает проблема выявления области наиболее эффективных параметров упрочнения изделий из алюминиево-магниевых материалов. Ввиду сложности проведения громоздких экспериментальных исследований отдано предпочтение исследованиям с применением конечноэлементного анализа [2].

Целью исследований является установление области эффективных технологических параметров процесса упрочнения волной деформации АМг-сплавов с применением конечноэлементного анализа.

Материалы и методы исследований

Ранее процесс упрочнения волной деформации моделировался в программном модуле Deform 3D. Выходными параметрами для определения искомых характеристик были эквивалентные деформации и эквивалентные напряжения по Мизесу [3; 4].

В настоящей работе конечноэлементный анализ выполнялся в программном модуле ANSYS/LS-DYNA, позволяющем с высокой степенью точности моделировать нелинейные быстротечные динамические процессы в неупругих средах, к которым и относится обработка ППД. Кроме того, ANSYS/LS-DYNA позволяет в ручном режиме задавать механические характеристики материала, тем самым учитывая ряд его особенностей. В данном случае, на основе экспериментальных результатов определения статической прочности на разрыв образцов из сплава АМг2, диаграмма растяжения аппроксимирована степенной функцией, параметры которой заложены в библиотеку материалов ANSYS/LS-DYNA [9].

Известно, что основными технологическими параметрами, влияющими на параметры качества после волновой обработки, являются энергия удара, размеры инструмента и длительность ударного импульса [1]. При проведении экспериментальных исследований по оценке адекватности моделирования длительность ударного импульса является величиной постоянной (T = 200 мкс), поэтому основными изменяющимися параметрами являются энергия удара и размер инструмента. В качестве выходных значений использовались эквивалентные напряжения по Мизесу, которые, согласно методике М.П. Марковца, переводились в значения твердости [5].

На основании данных [6-8] оптимальными при упрочнении считаются энергии удара от 5 до 80 Дж - в зависимости от диаметра инструмента (шара) и исходной твердости материала. Так как исходная твердость АМг-сплавов невысока и составляет 450-650 МПа, то верхней границей энергии удара принято 60 Дж. Нижняя граница энергии удара принята на уровне 10 Дж, так как экспериментально установлено, что приложение меньшей энергии не обеспечивает требуемой степени упрочнения. Шаг энергии удара при моделировании составил 10 Дж.

 В качестве инструмента были выбраны шары диаметром от 9 до 27 мм и торец цилиндрического индентора, заправленный под сферу диаметром от 12 до 36 мм. Форма инструментов изображена на рис. 1. Частным случаем является практически плоский торец цилиндрического индентора, диаметр сферы при этом составляет 250 мм. Выбор формы и размера инструмента основывался на данных исследования КПД процесса упрочнения волной деформации [1].

Для установления эффективных режимов обработки проводился следующий вычислительный эксперимент. На инструмент (шар или цилиндрический индентор со сферическим торцом), установленный на образце из сплава АМг2, с высоты h сбрасывался боек массой m = 2 кг. Высота h рассчитывалась исходя из требуемой энергии удара (в Дж). Схема эксперимента представлена на рис. 2.

Графическими средствами ANSYS/LS-DYNA создавалась объемная твердотельная модель исследуемого процесса. Каждому объекту из библиотеки присваивались свойства материала, из которого он изготовлен: боёк и инструмент являются абсолютно твердыми стальными телами, упрочняемый образец - деформируемое тело со свойствами сплава АМг2. Далее каждый объект разбивался на конечноэлементную сетку (рис. 3), задавались параметры нагружения, время расчета, необходимая точность вычислений и производился запуск расчета.


        
Для каждого элемента находилось значение эквивалентных напряжений по Мизесу, которые конвертировались в значения твердости. Далее рассчитывались значения степени упрочнения в соответствии с формулой [1]

ΔНμ = ((НV HV0) /HV0) 100 %,

где ΔНμ - степень упрочнения; НV - твердость поверхности после упрочнения; HV0 - исходная твердость материала.

         Для оценки адекватности созданной модели проводилась серия экспериментальных исследований. На шары диаметрами 9, 12, 19 и 27 мм, установленные на образце из сплава АМг2, с высоты 1,5 м сбрасывался боек массой 2 кг. Энергия удара при этом составляла 29,6 Дж (≈30 Дж). В результате на поверхности образца также формировался пластический отпечаток. Эксперимент повторялся не менее 5 раз для каждого шара. Образец распиливался по центру отпечатка. Под отпечатком производились измерения микротвердости в соответствии с рис. 4 (по 3 дорожки под каждым отпечатком). Расстояние между двумя смежными отпечатками в горизонтальной и вертикальной плоскостях составляло 0,7 мм (в соответствии с требованиями ГОСТ 2999-75).

         По трем измерениям на одной глубине рассчитывалось среднее значение, которое впоследствии использовалось для расчетов. На основании 10 экспериментов строилась диаграмма рассеяния в программе Statistica. Результаты эксперимента аппроксимировались кубической параболой. Рассчитаны коэффициент корреляции (0,92), значение критерия Фишера (F = 48,012) и уровень значимости полученных зависимостей (p = 0,00007). Уровень значимости p значительно меньше 0,01, полученные результаты можно считать статистически значимыми. Расхождение экспериментальных и вычислительных данных составляет менее 7,9 %.

Анализ распределения микротвердости в поверхностном слое и определение эффективных параметров упрочнения

Инструмент в виде шара. В результате вычислительного эксперимента по определению наиболее эффективных размеров инструмента и энергии удара установлено, что упрочнение инструментом в форме шара диаметром 19 мм обеспечивает максимальную степень упрочнения на поверхности при энергии удара 20 и 30 Дж, на 10-20 % большую, чем при аналогичных энергиях удара шарами диаметрами 9, 12, 27 мм. Максимальная степень упрочнения располагается на поверхности до глубины 0,2-0,3 мм. На большей глубине наиболее упрочненная область смещается в сторону инструмента с меньшим диаметром и большей энергией удара. Шар диаметром 12 мм обеспечивает максимальную степень упрочнения 70 % на глубине до 1 мм. Разница степеней упрочнения между ним и другими шарами составляет около 10 %. На глубине более 1,5 мм наиболее упрочненная область смещается в сторону инструментов с большим диаметром (19 и 27 мм) и энергией удара 30-50 Дж. Разность степеней упрочнения при этом увеличивается до 15 % и на глубине 7 мм достигает 20 %. Общая глубина упрочнения в диапазоне диаметров шаров 15-25 мм составляет не более 7 мм при энергиях удара 30-40 Дж. Значения ΔНμ < 10 % учитываются как погрешность, степень упрочнения отсутствует. Глубина пластических отпечатков в данных случаях составляет 0,8; 1,2; 1,4 мм для энергий удара 30, 40 и 50 Дж соответственно. Шар диаметром 9 мм обеспечивает большую глубину и степень упрочнения, однако пластические отпечатки глубиной до 2 мм не обеспечивают технологичность процесса упрочнения в связи с высокой шероховатостью обработанной поверхности и возможностью заклинивания инструмента, поэтому его применение весьма ограниченно. При энергиях удара 50 Дж и более при всех диаметрах инструмента возможно превышение пластических свойств материала, что приведет к исчерпанию пластичности и образованию трещин в процессе эксплуатации детали. Дальнейшее увеличение энергии удара может привести к ее нерациональному использованию - увеличению размеров пластического отпечатка при снижении степени упрочнения [1]. Эффективными размерами инструмента являются диаметры 12, 19 и 27 мм при энергиях удара 30, 40 и 50 Дж, обеспечивающие наибольшую глубину упрочнения (до 6 мм) при незначительном снижении максимальной степени упрочнения (на 5-10 %).

Для решения последующих задач требуется проведение локальной обработки волной деформации. Сечение детали в данном случае составляет 40×40 мм. В связи с ограниченной упрочняемой зоной применение шаров диаметрами более 15 мм является весьма затруднительным, так как, исходя из размера пластического отпечатка 8-11 мм (в зависимости от энергии удара), для упрочнения заданного участка за один проход необходимо 4-5 шаров. При этом размеры инструмента будут значительно превышать упрочняемый участок. Для создания более компактного инструмента возможна замена инструмента в виде шара на цилиндрические инденторы с торцами, заправленными под сферу с аналогичными радиусами.

Инструмент в виде цилиндрического индентора со сферическим торцом. Проведено моделирование упрочнения цилиндрическими бойками диаметром 10 мм (размер выбран исходя из размеров формируемых пластических отпечатков) с диаметрами сферы на торце 12, 19, 27, 36 и 250 мм (250 мм - частный случай, торец является практически плоским) и энергиями удара 10-60 Дж. Наибольшая степень упрочнения на поверхности наблюдается при использовании инденторов с диаметром сферы 12 и 19 мм при энергии удара 40 Дж, при этом максимальные значения твердости наблюдаются до глубины 0,5 мм. Разность степеней упрочнения по сравнению с инденторами с большим диаметром сферы составляет 10 %. На глубине 1,4-2,1 мм наибольшая степень упрочнения наблюдается при диаметре сферы на торце инструмента, равном 12 мм. При этом разница значений степени упрочнения составляет до 5 %. На глубине от 2,8 мм область больших значений степени упрочнения смещается в сторону инструментов с большим диаметром сферы на торце при энергии удара 40 Дж. На глубине более 6 мм упрочнение отсутствует. Общая глубина упрочнения меньше, чем при упрочнении шарами, однако на глубине до 4,5 мм значения степени упрочнения шарами и цилиндрическими бойками со сферическими торцами идентичны, разница составляет от 3 до 5 %. Цилиндрический индентор с диаметром сферы 250 мм обеспечивает наименьшую глубину и степень упрочнения. Использование данного инструмента для волновой обработки практически невозможно вследствие его геометрии. Упрочнение цилиндрическими инденторами со сферическим торцом обеспечивает максимальную степень упрочнения порядка 70 % при глубине упрочненного слоя до 6 мм. При локальной обработке волной деформации наибольшую глубину упрочнения без существенной потери степени упрочнения обеспечивает инструмент с диаметром сферы 19-27 мм при энергии удара 40 Дж. Применение данного типоразмера инструмента позволит повысить производительность процесса волнового упрочнения и обеспечит формирование оптимальной структуры материала. Наиболее полные сведения о максимальной формируемой степени упрочнения в поверхностном слое в зависимости от энергии удара, формы и размера инструмента представлены в таблице и на рис. 5 и 6.

                                                                                                                                                                                                        Таблица

Распределение максимальной степени упрочнения ΔНμmax (в %) на поверхности

в зависимости от энергии удара, формы и диаметра инструмента

Тип инструмента

Энергия удара, Дж

Диаметр инструмента, мм

9

12

19

27

36

250

Шар

10

55

65

70

59

-

-

20

56

67

77

54

-

-

30

67

70

78

63

-

-

40

73

71

73

56

-

-

50

67

80

75

68

-

-

60

63

71

64

62

-

-

Цилиндрический индентор со сферическим торцом

10

-

58

60

52

55

44

20

-

65

63

57

52

50

30

-

69

61

69

55

48

40

-

74

67

72

58

48

50

-

70

64

69

60

45

60

-

60

55

65

53

47

Заключение        

          После проведения исследований распределения микротвердости в поверхностном слое можно сделать выводы  о наиболее эффективных параметрах упрочнения:

         1. Наиболее рациональной формой инструмента для создания упрочненного поверхностного слоя изделия в процессе обработки волной деформации является шар. В результате обработки шарами возможно формирование упрочненного слоя глубиной до 7 мм с максимальной степенью упрочнения до 75 %. Эффективными являются диаметры шара от 12 до 27 мм при энергиях удара от 30 до 50 Дж.

         2. Исходя из последующих задач требуется локальная обработка детали сечением 40×40 мм. Наиболее рационально применение многоконтактной схемы нагружения несколькими инструментами. Для обеспечения технологичности процесса волновой обработки требуется создание более компактного инструмента при сохранении многоконтактности. Это возможно при использовании цилиндрических инденторов диаметром 10 мм со сферическими торцами, контактирующими с упрочняемой поверхностью.

         3. Установлено, что применение цилиндрических инденторов со сферическими торцами с диаметрами сферы, идентичными диаметрам шара, обеспечивает меньшую глубину и степень упрочнения. Глубина упрочненного слоя составляет до 6 мм. Разница степеней упрочнения на всех глубинах для шаров и цилиндрических инденторов составляет около 5 %. Основное преимущество бойков со сферическим торцом заключается в технологичности изготовления многоконтактного инструмента и последующей волновой упрочняющей обработки.

         4. Установлено, что наиболее эффективными являются цилиндрические инденторы с диаметром сферы от 19 до 27 мм при энергии удара, равной 40 Дж.

References

1. Kirichek, A.V. Tehnologiya i oborudovanie statiko-impul'snoy obrabotki poverhnostnym plasticheskim deformirovaniem / A.V. Kirichek, D.L. Solov'ev, A.G. Lazutkin. - M.: Mashinostroenie, 2004. - 288 s. - (B-ka tehnologa).

2. Mehanika nagruzheniya poverhnosti volnoy deformacii / A.G. Lazutkin, A.V. Kirichek, Yu.S. Stepanov, D.L. Solov'ev. - M.: Mashinostroenie-1, 2005. - 149 s.

3. Kirichek, A.V. Modelirovanie narezaniya rez'b s pomosch'yu metoda konechnyh elementov / A.V. Kirichek, A.N. Afonin // Izvestiya OrelGTU. - 2008. - № 4-2/272 (550). - S.29-32.

4. Barinov, S.V. Avtomatizaciya raschetov uprochnennogo poverhnostnogo sloya pri poverhnostnoy plasticheskoy deformacii / S.V. Barinov // Nauka i obrazovanie v razvitii promyshlennoy, social'noy i ekonomicheskoy sfer regionov Rossii: materialy vseros. mezhvuz. nauch. konf. - Murom: MIVlGU, 2009. - T. 2. - S. 55.

5. Markovec, M.P. Opredelenie mehanicheskih svoystv metallov po tverdosti / M.P. Markovec. - M.: Mashinostroenie, 1979. - 191 s.

6. Odincov, L.G. Uprochnenie i otdelka detaley poverhnostnym plasticheskim deformirovaniem: spravochnik / L.G. Odincov. - M.: Mashinostroenie, 1987. - 328 s.

7. Braslavskiy, V.M. Tehnologiya obkatki krupnyh detaley rolikami / V.M. Braslavskiy. - 2-e izd. - M.: Mashinostroenie, 1975. - 160 s.

8. Papshev, D.D. Otdelochno-uprochnyayuschaya obrabotka poverhnostnym plasticheskim deformirovaniem / D.D. Papshev. - M.: Mashinostroenie, 1978. - 152 s.

9. ANSYS Free Student Software. - URL: https://www.ansys.com/academic/free-student-products (data obrascheniya: 20.08.2018).

Login or Create
* Forgot password?