AFTER-EFFECTS OF GEOMAGNETIC STORMS: STATISTICAL ANALYSIS AND THEORETICAL EXPLANATION
Abstract and keywords
Abstract (English):
Our previous studies have shown the presence of daytime positive electron density disturb-ances during several days after the start of the recovery phase. The aim of this paper is to study after-effects of geomagnetic storms (after-storm effects), i.e. ionospher-ic effects observed on the 3–5th day after the beginning of the storm recovery phase. From numerical calcula-tions with the GSM TIP model, we have found the main mechanisms for the formation of the after-storm effects. Using Irkutsk (52° N, 104° E) and Kaliningrad (54° N, 20° E) ionosonde data, we have carried out a statistical analysis of daytime ionospheric responses to geomagnetic storms. As a result of the analysis, we obtained averaged ionospheric responses at the beginning of the storm recovery phase and for five consecutive days. The statistical analysis results received near the beginning of the recovery phase are in good agreement with the well-known ionospheric effects of geomagnetic storms obtained in previous studies. For the first time, the obtained statistics of iono-spheric responses observed on the 3–5th day after the beginning of the recovery phase allowed us to reveal the dependence of after-storm ionospheric effects on season, storm intensity, and ionosonde geomagnetic latitude. In addition, we for the first time present the interpretation of after-storm ionospheric effects from numerical simulation results.

Keywords:
geomagnetic storm, after-storm ionospheric effects, statistics, GSM TIP model
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

При исследовании ионосферных откликов на геомагнитные бури обычно рассматриваются возмущения, наблюдаемые на главной фазе бури, поскольку ионосферные возмущения наиболее интенсивны именно в этот период [Buonsanto, 1999; Mendillo, 2006; Prölss, 1995, 2008]. Отрицательные возмущения электронной концентрации в F-области ионосферы на начальных этапах фазы восстановления геомагнитных бурь являются одним из наиболее исследованных явлений [Prölss, 1995]. Напротив, положительные ионосферные возмущения на фазе восстановления геомагнитных бурь представляют собой наименее исследованную область отклика верхней атмосферы на геомагнитные бури, которая изучается только последние пять лет [Клименко и др., 2015; Balan et al., 2013; Suvorova et al., 2013]. Поведение же ионосферы на более поздних стадиях фазы восстановления и после окончания геомагнит-ной бури вообще практически не исследовалось. Однако модельные расчеты и наблюдения ионосферных эффектов геомагнитных бурь 26 сентября 2011 г. (Dst=–118 нТл) и 17 марта 2015 г. (Dst=–223 нТл) показали наличие достаточно интенсивных положительных возмущений электронной концентрации, которые наблюдались в дневное время на 3–5-й день после начала фазы восстановления геомагнитных бурь [Клименко и др., 2015; Klimenko et al., 2017, 2018]. Далее мы будем называть этот период фазой последействия геомагнитных бурь, а дневные ионосферные эффекты, наблюдающиеся на 3–5-й день после начала фазы восстановления бури, эффектами последействия геомагнитных бурь.

Расчеты параметров верхней атмосферы [Клименко и др., 2015; Klimenko et al., 2017, 2018] с использованием Глобальной самосогласованной модели термосферы, ионосферы и протоносферы (ГСМ ТИП) [Намгаладзе и др., 1990; Клименко и др., 2006; Korenkov et al., 1998] показали, что основной причиной положительных эффектов последействия является рост отношения концентрации атомарного кислорода к концентрации молекулярного азота n(O)/n(N2). Этот результат оказался неожиданным, поскольку хорошо известным эффектом на фазе восстановления геомагнитной бури является обратный эффект — уменьшение отношения n(O)/n(N2) и, как следствие, отрицательное возмущение элек-тронной концентрации [Prölss, 1995]. На самом деле никакого противоречия между результатами расче-тов модели ГСМ ТИП и общепринятыми представлениями нет: отрицательное возмущение n(O)/n(N2) характерно для главной фазы бури и первых дней фазы восстановления, тогда как положительное воз-мущение n(O)/n(N2) указывает на окончание фазы восстановления и является эффектом последействия геомагнитных бурь. Таким образом, возмущение n(O)/n(N2), равно как и возмущение электронной концентрации, подобно колебаниям маятника, переходит из отрицательной фазы в положительную в течение нескольких дней после начала фазы вос-становления бури. Детальный анализ механизмов формирования эффектов последействия будет изложен в следующем разделе.

Ранее полученные результаты [Клименко и др., 2015; Klimenko et al., 2017, 2018] оставили открытым вопрос о том, являются ли эффекты после-действия следствием особенностей сценариев рассмотренных геомагнитных бурь 26 сентября 2011 г. и 17 марта 2015 г., или же они характерны для всех геомагнитных бурь. Для ответа на этот вопрос был разработан специальный метод статистического анализа ионосферных откликов на геомагнитные бури на основе данных иркутского (52° N, 104° E) и калининградского (54° N, 20° E) ионозондов.

Таким образом, в статье решаются следующие задачи: а) проведение детального анализа механизмов формирования эффектов последействия; б) разработка метода статистического анализа ионосферных откликов на геомагнитные бури; в) исследование эффектов последействия на основе полученной статистики ионосферных откликов на геомагнитные бури.

References

1. 1. Brunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of the ionosphere]. Moscow, Nauka Publ., 1988, 528 p. (In Russian).

2. Buonsanto M.J. Ionospheric storms: a review. Space Sci. Rev. 1999, vol. 88, no. 3–4, pp. 563–601. DOI: 10.1023/A: 1005107532631.

3. Balan N., Otsuka Y., Nishioka M., Liu J.Y., Bailey G.J. Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. 2013, vol. 118, pp. 2660–2669. DOI: 10.1002/jgra.50275.

4. Danilov A.D. Reaction of F region to geomagnetic disturbances (review). Geliogeofizicheskie issledovaniya [Heliogeophys. Res.]. 2013, no. 5, pp. 1–33. (In Russian).

5. Field P.R., Rishbeth H. The response of the ionospheric F2-layer to geomagnetic activity: an analisys of wordwide data. J. Atmos. Solar-Terr. Phys. 1997, vol. 59, no. 2, pp. 163–180. DOI: 10.1016/S1364-6826(96)00085-5.

6. Klimenko V.V., Klimenko M.V., Bryukhanov V.V. Numerical simulation of the electric field and zonal current in the Earth’s ionosphere — problem statement and test calculations. Mathematical Models and Computer Simulations. 2006, vol. 18, no. 3, pp. 77–92. (In Russian).

7. Klimenko M.V., Klimenko V.V., Ratovsky K.G., Goncharenko L.P. Ionospheric effects caused by the series of geomagnetic storms of September 9–14, 2005. Geomagnetism and Aeronomy. 2011, vol. 51, no. 3, pp. 364–376. DOI: 10.1134/S00 16793211030108.

8. Klimenko M.V., Klimenko V.V., Bessarab F.S., Ratovsky K.G., Zakharenkova I.E., Nosikov I.A., Stepanov A.E., Kotova D.S., Vorobjev V.G., Yagodkina O.I. Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects. Geomagnetism and Aeronomy. 2015, vol. 55, no. 6, pp. 744–762. DOI: 10.1134/S0016793215050072.

9. Klimenko M.V., Klimenko V.V., Zakharenkova I.E., Ratovsky, Korenkova N.A., Yasyukevich Yu.V., Mylnikova A.A., Cherniak Iu.V. Similarity and differences in morphology and mechanisms of the foF2 and TEC disturbances during the geomagnetic storms on 26–30 September 2011. Ann. Geophys. 2017, vol. 35, pp. 923–938. DOI: 10.5194/angeo-35-923-2017.

10. Klimenko M.V., Klimenko V.V., Despirak I.V., Zakharenkova I.E., Kozelov B.V., Cherniakov S.M., Andreeva E.S., Tereshchenko E.D., Vesnin A.M., Korenkova N.A., Gomo-nov A.D., Vasiliev E.B., Ratovsky K.G. Disturbances of the thermosphere—ionosphere—plasmasphere system and auroral electrojet at 30° E longitude during the St. Patrick’s Day geomagnetic storm on 17–23 March 2015. J. Atmos. Solar-Terr. Phys. 2018. DOI: 10.1016/j.jastp.2017.12.017. (In print).

11. Korenkov Y.N., Klimenko V.V., Forster M., Bessarab F.S., Surotkin V.A. Calculated and observed ionospheric parameters for Magion-2 passage above EISCAT on July 31 1990. J. Geophys. Res. 1998, vol. 103, no. A7, pp. 14,697–14,710. DOI: 10.1029/98JA00210.

12. Krinberg I.A., Tashchilin A.V. Ionosfera i plazmosfera [Ionosphere and Plasmasphere]. Moscow, Nauka, 1984, 129 p. (In Russian).

13. Mayr H.G., Harris I., Spencer N.W. Some properties of upper atmosphere dynamics. Rev. Geophys. Space Phys. 1978, vol. 16, pp. 539–565. DOI: 10.1029/RG016i004p00539.

14. Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, vol. 44, RG4001. DOI: 10.1029/2005RG000193.

15. Mikhailov A.V. Ionospheric F2-layer storms. Fisica de la Tierra. 2000, vol. 12, pp. 223–262.

16. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., Karpov I.V., Bessarab F.S., Surotkin V.A., Glushchenko T.A., Naumova N.M. Global numerical model of the Earth’s thermosphere, ionosphere and protonosphere. Geomagnetism and Aeronomy. 1990, vol. 30, no. 4, pp. 612–619. (In Russian).

17. Pedatella N.M. Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm. Geophys. Res. Lett. 2016, vol. 43, iss. 18, pp. 9383–9389. DOI: 10.1002/ 2016GL070592.

18. Prölss G.W. On explaining the local time variation of ionospheric storm effects. Annales Geophysicae. 1993, vol. 11, no. 1, pp. 1–9.

19. Prölss G.W. Ionospheric F-region storms. Handbook of Atmospheric Electrodynamics. 1995, pp. 195–248.

20. Prölss G.W. Ionospheric storms at mid-latitudes: a short review. Midlatitude Ionospheric Dynamics and Disturbances. 2008, pp. 9–24. (Geophys. Monograph Ser., vol. 181). DOI: 10.1029/181GM03.

21. Suvorova A.V., Dmitriev A.V., Tsai L.-C., Kunitsyn V.E., Andreeva E.S., Nesterov I.A., Lazutin L.L. TEC evidence for near-equatorial energy deposition by 30 keV electrons in the topside ionosphere. J. Geophys. Res. 2013, vol. 118, pp. 4672–4695. DOI: 10.1002/jgra.50439.

22. Tashchilin A.V. Formirovanie krupnomasshtabnoi struktury ionosfery v spokoinykh i vozmushchennykh usloviyakh [Formation of large-scale structure of the ionosphere in quiet and disturbed conditions. Dr. Phys. & Math. Sci. Diss.]. Irkutsk, 2014, 236 p. (In Russian).

23. URL: https://www.esrl.noaa.gov/psd (accessed September 8, 2018).

24. URL: https://www.esrl.noaa.gov/psd (accessed September 8, 2018).