When developing an automated control system by the manipulator of the self-propelled forest car tasks of determination of the best values of parameters were set at the set structure of object of optimization. In this regard it was necessary to decide on statement of an optimum task. For the solution of objectives the method of dynamic programming was used. As the method of dynamic programming allows to present system functioning in the form of discrete multistage process, proceeding from it, it is possible to allocate some factors which are boundary for everyone stage: probability of definition of assortment and probability of an error of definition of the count for transition of the manipulator to the configuration providing capture of assortment. Besides factorial space allocate some factors which are arguments of functions of weight and productivity of installation. Taking into account these factors and the restrictions imposed on them it is possible to find optimum strategy of management for all of multistage processes of functioning of an automated control system by the manipulator of the self-propelled forest car which is function of an initial condition of process. For finding of optimum values of optimized parameters the Optimization Toolbox program which is an element of a software package of MATLAB was used. By results of application of a method of dynamic programming optimum values of parameters are received.
the automated systems, optimization, the manipulator, the self-propelled forest car, automated management
В процессе разработки автоматизированной системы управления манипулятором самоходной лесной машины ставится задача определения наилучших значений параметров при заданной структуре объекта оптимизации. Такая задача называется параметрической оптимизацией. [1] Однако, при решении конкретной задачи оптимизации прежде всего необходимо выбрать математический метод, который приводил бы к конечным результатам с наименьшими затратами на вычисления или же давал возможность получить наибольший объем информации об искомом решении. Выбор того или иного метода в значительной степени определяется постановкой оптимальной задачи, а также используемой математической моделью объекта оптимизации.
1. Glebov N.I., Kochetov Yu.A., Plyasunov A.V. Metody optimizatsii. Uchebnoe posobie - Novosibirsk: Novosibirskiy gosudarstvennyy universitet, 2000. 105 s.
2. Panteleev A.V. Metody optimizatsii v primerakh i zadachakh. Uchebnoe posobie,2-e izdanie - M.: Vyssh. shk. , 2005. 544 s.
3. Trifonov A.G."Postanovka zadachi optimizatsii i chislennye metody ee resheniya" URL: http://matlab.exponenta.ru/optimiz/book_2/Lphp. (Data obrashcheniya: 20.03.2014).