Yakutsk, Russian Federation
Yakutsk, Russian Federation
Yakutsk, Yakutsk, Russian Federation
Yakutsk, Russian Federation
Yakutsk, Russian Federation
Yakutsk, Russian Federation
Yakutsk, Russian Federation
from 01.01.1999 until now
Yakutsk, Russian Federation
UDK 55 Геология. Геологические и геофизические науки
We report the results of monitoring of cosmic rays and geomagnetic field along 210 magnetic meridians in Yakutia in the first half of September 2017. The energy spectrum of solar cosmic rays during Ground Level Enhancement in September 10, 2017 is estimated as J=3027E–1.99exp(–E/729 MeV). We present the results of the forecast and complex analysis of the magnetic storm on September 7–9, 2017 with Dst=–124 nT. The forecast lead time is about one day. We examine how the storm affected the electric potential and VLF signal propagation from RSDN-20 radio navigation stations. Irregular Pi3–Pi1 pulsations occurred during the September 8, 2017 magnetic storm from 12 to 20 UT. The pulsations were accompanied by variations in electrotelluric potentials and geomagnetic fields with the correlation coefficient between them ρ(E, H)=0.5÷0.9. The effects of the magnetic storm manifested themselves as an increase in the attenuation and a decrease in the phase delay of VLF radio signals.
cosmic rays, solar flares, solar proton fluxes, magnetic storm, electric potentials, VLF radio wave propagation
ОБЩАЯ ГЕЛИО-, КОСМО- И ГЕОФИЗИЧЕСКАЯ ОБСТАНОВКА В СЕНТЯБРЕ 2017 г.
В настоящее время мы находимся вблизи минимума 24-го цикла солнечной активности. В это время трудно ожидать какой-либо сильной активности Солнца и соответствующих эффектов космической погоды. Однако после длительного периода спокойствия в первой половине сентября 2017 г. Солнце неожиданно активизировалось, что проявилось в его вспышечной и корональной активности. В это время не наблюдалось каких-либо выдающихся событий — тем не менее, сама активизация Солнца в минимуме 11-летнего цикла и ее геофизические проявления обращают на себя внимание. Поэтому представляет несомненный интерес их изучение по данным комплексных наблюдений различными приборами Института космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН (ИКФИА СО РАН), образующими единую сеть пунктов измерений различных физических параметров.
После долгого затишья в начале сентября 2017 г. на Солнце появилось несколько крупных групп пятен, в которых произошел целый ряд мощных вспышек.
С 4 по 10 сентября 2017 г. на Солнце было зарегистрировано 26 вспышек класса М и 4 вспышки класса Х, что является максимальным проявлением вспышечной активности с апреля 2015 по май 2018 г. В это время космическими аппаратами серии GOES в одной и той же активной области AR 12673 на Солнце был зафиксирован ряд больших вспышек балла М и Х (рис. 3). Информация о них доступна на сайте [https://satdat.ngdc.noaa.gov/sem/goes/data/new_avg/2017/09/goes15/csv/g15_xrs_1m_20170901_20170930.csv]. Список наиболее мощных вспышек представлен в табл. 1. Большинство сопровождалось выбросами корональной массы [http://www.spaceweather.com], а в околоземном космическом пространстве были зарегистрированы возрастания потока солнечных космических лучей (СКЛ), форбуш-понижений и магнитных бурь.
1. Aleksandrov M.S., Bakleneva Z.M., Gladshtein N.D., Ozerov V.P., Potapov A.V., Remizov L.T. Fluktuatsii elektromagnitnogo polya Zemli v diapazone SNCh [Fluctuations of the Earth’s electromagnetic field in the SLF range]. Moscow, Nauka Publ., 1972, 195 p. (In Russian).
2. Baishev D.G., Moiseev A.V., Boroev R.N., Makarov G.A., Poddel’skiy I.N., Poddel’skiy A.I., Shevtsov B.M., Yumoto K. International MAGDAS Project: first results of geomagnetic observations in Yakutia. Nauka i obrazovanie [Science and Education]. 2013, no. 1 (69), pp. 7-10. (In Russian).
3. Beloglazov M.I., Remenets G.F. Rasprostranenie sverkhdlinnykh radiovoln v vysokikh shirotakh [Superlong radio waves propagation in high latitudes]. Leningrad, Nauka Publ., 1982, 237 p. (In Russian).
4. Berezhko E.G., Taneev S.N. Shock acceleration of solar cosmic rays. Astron. Lett. 2013, vol. 39, no. 6, pp. 393-403. DOI:https://doi.org/10.1134/S1063773713060017.
5. Blackman R.B. The Measurement of Power Spectra from the Point of View of Communications Engineering. New York, Dover Publ., 1958, 120 p.
6. Cheng D.Y. Anomalous short-period pulsations in GOES magnetometer data before solar proton events. Solar Phys. 1991, vol. 131, pp. 395-406.
7. Ellison D.C., Ramaty R. Shock acceleration of electrons and ions in solar flares. Astrophys. J. 1985, vol. 298, pp. 400-408.
8. Hessler V.P., Wescott E.M. Correlation between earth current and geomagnetic disturbance. Nature. 1959, vol. 184, pp. 627.
9. Grigoryev V.G., Starodubtsev S.A. Global survey method in real time and space weather forecasting. Bull. RAS: Phys. 2015, vol. 79, pp. 649-653. DOI:https://doi.org/10.3103/S1062873815050226.
10. Grigoryev V.G., Starodubtsev S.A., Potapova V.D. Definition of parameters of daily anisotropy of cosmic rays according to the world network of neutron monitors. J. Phys.: Conf. Ser. 2013, vol. 409, iss. 1, article id. 012172. DOI:https://doi.org/10.1088/1742-6596/409/1/012172.
11. Grigoryev V.G., Starodubtsev S.A., Gololobov P.Y. Monitoring of geomagnetic disturbance predictors from cosmic ray ground measurements. Bull. RAS: Phys. 2017, vol. 81, no. 2, pp. 200-202.
12. Karimov R.R., Kozlov V.I., Mullayarov V.A. Specific features of variations in the characteristics of VLF signals when the lunar shadow propagated along the path during the solar eclipse of March 29, 2006. Geomagnetism and Aeronomy. 2008, vol. 48, no. 2, pp. 240-244.
13. Karimov R.R., Kozlov V.I., Korsakov A.A., Mullayarov V.A., Mel’chinov V.P. Variations of very low frequency signal parameters of radio navigation stations registered in Yakutsk. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space]. 2012, vol. 9, no. 4, pp. 57-62. (In Russian).
14. Kleymenova N.G. Geomagnetic pulsations. Model’ kosmosa. Kn. 1: Fizicheskie usloviya v kosmicheskom prostranstve [Space Model. Vol. 1: Physical Conditions in Space]. Moscow, MGU Publ., 2007, vol. 1, pp. 611-626. (In Russian).
15. Kobrin M.M., Malygin V.I., Snegirev S.D. Long-period pulsations of the Earth's magnetic field with periods more than 20 minutes before proton flares on the Sun. Planet. Space Sci. 1985, vol. 33, pp. 1251-1257.
16. Krolevets A.N., Kopylova G.N. Tidal components in the electrotelluric field. Izvestiya. Physics of the Solid Earth. 2003, vol. 39, no. 5, pp. 418-427.
17. Krymsky G.F., Grigor’ev V.G., Starodubtsev S.A. New method for estimating the absolute flux and energy spectrum of solar cosmic rays based on neutron-monitor data. JETP Lett. 2008, vol. 99, no. 7, pp. 411-413.
18. Krymsky G.F., Grigoryev V.G., Starodubtsev S.A., Taneev S.N. Ground-level enhancement of solar cosmic ray on October 28, 2003: a mechanism of the generation of particles in the Sun. JETP Lett. 2015, vol. 102, pp. 335-342.
19. Kumar A., Kumar S. Solar flare effects on D-region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24. Earth, Planets and Space. 2018, 70:29. DOI:https://doi.org/10.1186/s40623-018-0794-8.
20. Lovell J.L., Duldig M.L., Humble J.E. An extended analysis of the September 1989 cosmic ray ground level enhancement. J. Geophys. Res.: Space Phys. 1998, vol. 103, pp. 23733-23742.
21. Mitra A.P. Vozdeistvie solnechnykh vspyshek na ionosferu Zemli [Effects of solar flares on Earth's ionosphere]. Moscow, Mir Publ., 1977. 370 p. English edition: Mitra A.P. Ionospheric Effects of Solar Flares. Dordrecht, Holland, D. Reidel Publ. Co., 1974. 307 p.
22. Moiseev A.V., Makarov G.A., Neustroev N.I. Geomagnetic investigations in the north-eastern Russia. Vestnik Otdeleniya nauk o Zemle RAN [Bull. Department of Earth Sciences RAS]. 2011, NZ5004. DOI:https://doi.org/10.2205/2011NZ000106. (In Russian).
23. Nymmik R.A. Inflections (knees) in wide-range spectra of solar energetic protons and heavy ions: their form, parameters, and regularities. Bull. RAS: Phys. 2011, vol. 75, no. 6, pp. 761-763. DOI:https://doi.org/10.3103/S1062873811060335.
24. Orlov A.B., Pronin A.E., Uvarov A.N. Latitudinal dependence of the effective electron-loss coefficient in the daytime lower ionosphere as deduced from VLF phase variations and riometric absorption data during SIDs. Geomagnetism and Aeronomy. 1998, vol. 38, no. 3, pp. 341-346.
25. Plotnikov I.Ya., Shadrina L.P., Starodubtsev S.A., Krymsky G.F. Coronal mass ejection, geomagnetic storms and ground-based cosmic ray intensity decreases. Proc. 10th Int. Conf. “Problems of Geocosmos”. St. Petersburg, Petrodvorets, Russia, October 2014, pp. 351-354.
26. Rodger C.J., Clilverd M.A., Kavanagh A.J., Watt C.E.J., Verronen P.T., Raita T. Contrasting the responses of three different ground-based instruments to energetic electron precipitation. Radio Sci. 2012, vol. 47, no. 2, RS20211-13. DOI:https://doi.org/10.1029/2011RS004971.
27. Shadrina L.P., Starodubtsev S.A. Manifestation of interplanetary shock in geomagnetic storms and substorms. Physics of Auroral Phenomena. 2016a, vol. 39, pp. 23-26.
28. Shadrina L.P., Starodubtsev S.A. Effect of IMF turbulence in the vicinity of interplanetary shocks on geomagnetic storms and substorms generation. Proc. 11th Int. Conf. “Problems of Geocosmos”, St. Petersburg, Petrodvorets, Russia, October, 2016, 2016b, pp. 103.
29. Shadrina L.P., Barkova E.S., Plotnikov I.Ya., Starodubtsev S.A. Large-scale solar wind disturbances as a reason of intense geomagnetic storms. Proc. 9th Int. Conf. “Problems of Geocosmos”. St. Petersburg, Petrodvorets, Russia, October 2012, pp. 381-386.
30. Shadrina L.P., Krymsky G.F., Plotnikov I.Ya., Starodubtsev S.A. Interplanetary shock geoeffectivity during the growth phase of solar activity. Proc. 10th Int. Conf. “Problems of Geocosmos”. St. Petersburg, Petrodvorets, Russia, October 2014, pp. 388-391.
31. Silber I., Price C. On the use of VLF narrowband measurements to study the lower ionosphere and the mesosphere -lower thermosphere. Surveys in Geophysics, 2017, vol. 38, pp. 407-441.
32. Starodubtsev S.A., Grigor’ev V.G., Gololobov P.Yu. Kuzmin A.I. Yakutsk Cosmic Ray Spectrograph. Sbornik trudov Vserossiiskoi konferentsii “Geliogeofizicheskie issledovaniya v Arktike” [Proc. National Conference “Heliogeophysical Research in Arctic”]. Moscow, 2016, pp. 125-128. (In Russian).
33. Starodubtsev S.A., Grigoryev V.G., Gololobov P.Y. The A.I. Kuz’min cosmic ray spectrograph: New scintillation muon telescopes. Bull. RAS: Phys. 2017, vol. 81, iss. 4, pp. 538-541.
34. URL: ftp://ftp.swpc.noaa.gov/pub/lists/pchan/README (accessed October 9, 2018).
35. URL: http://stjarnhi-mlen.se/comp/tutorial.html (accessed October 9, 2018).
36. URL: https://satdat.ngdc.noaa.gov/sem/goes/data/new_ avg/2017/09/goes15/csv/g15_xrs_1m_20170901_20170930.csv (accessed October 9, 2018).
37. URL: http://www.spaceweather.com (accessed October 9, 2018).
38. URL: https://en.wikipedia.org/wiki/Geomagnetic_storm (accessed October 9, 2018).
39. URL: https://satdat.ngdc.noaa.gov/sem/goes/data/new_ avg/2017/09/goes15/csv (accessed October 9, 2018).
40. URL: http://www.solarham.net/top10.txt (accessed October 9, 2018).
41. URL: https://www.spaceweatherlive.com (accessed October 9, 2018).
42. URL: http://www.solarham.net (accessed October 9, 2018).
43. URL: http://wdc.kugi.kyoto-u.ac.jp/dst_realtime/index.html (accessed October 9, 2018).
44. URL: http://www.ysn.ru/ipm (accessed October 9, 2018).
45. URL: http://www.ysn.ru/smt (accessed October 9, 2018).
46. URL: ftp://ftp.swpc.noaa.gov/pub/lists/pchan (accessed October 9, 2018).
47. URL: http://www.nmdb.eu (accessed October 9, 2018).
48. URL: http://www.intermagnet.org (accessed October 9, 2018).
49. URL: http://magdas2.serc.kyushu-u.ac.jp/station/index.html (accessed October 9, 2018).
50. URL: https://cdaweb.sci.gsfc.nasa.gov/index.html (accessed October 9, 2018).
51. URL: http://www.stce.be/newsletter/pdf/2017/STCEnews 20170915.pdf (accessed October 9, 2018).
52. URL: http://www.ysn.ru/~starodub/SpaceWeather/global_ survey_real_time.html (accessed October 9, 2018).