INTENSIFICATION OF REAGENT PURIFICATION FOR OILY WATER EFFLUENTS BY VIBROACOUSTIC IMPACT
Abstract and keywords
Abstract (English):
In this paper have been presented results of carried out researches on vibroacoustic intensification of coagulation and flocculation processes for oily water influents treatment at Ryazan oil refinery plant’s oil pumping station. Intensification was performed by application of vibration effects to a setup for coagulation and flocculation at resonant frequencies with vibration acceleration value equal to approximately 1 g. Lime, synthetic flocculent and aluminous coagulant were used as reagents. Waste waters contained kerosene and diesel with total oils concentration equal to approximately 1 mg/l. Experimental results have demonstrated the high efficiency of vibration application. Particularly, vibration application use allows reduce the reagents’ required concentration in treated waste waters up to 8 times for lime, up to 6 times for coagulant, up to 2 times for flocculent, meanwhile treatment time is reduced approximately twice while the treatment efficiency remains up to 98%.

Keywords:
water treatment, coagulation, flocculation, vibration, oils, reagent treatment.
Text

1. Введение
Для очистки сточных вод во многих случаях используются реагенты [1–4]. Это обусловлено в первую очередь относительно невысокими затратами.

References

1. Frog B. N., Levchenko A. P. Vodopodgotovka [Water preparation]. Moscow, MSU Publ., 1996. 680 p. (in Russian)

2. Zapolskii A. K., Baran A. A. Koagulyanty i flokulyanty v protsessakh ochistki vody: Svoystva. Poluchenie. Primenenie [Coagulants and flocculants in water treatment: Properties. Production. Application]. Leningrad, Chimia Publ., 1987, 203 p. (in Russian)

3. Babenkov E. D. Ochistka vody koagulyantami [Coagullants for waste water treatment]. Moscow, Nauka Publ., 1977. 357 p. (in Russian).

4. Oscar M. Rodriguez-Narvaez, Juan Manuel Peralta-Hernandez, Ashantha Goonetilleke, Erick R. Bandala, Treatment technologies for emerging contaminants in water: A review, In Chemical Engineering Journal, vol. 323, 2017, pp. 361–380, https://doi.org/10.1016/j.cej.2017.04.106

5. Shahryar Jafarinejad, Treatment of Oily Wastewater, In Petroleum Waste Treatment and Pollution Control, Butterworth-Heinemann, 2017, Pages 185–267, ISBN9780128092439, https://doi.org/10.1016/B978–0–12–809243–9.00006–7.

6. Ahmadun Fakhru’l-Razi, Alireza Pendashteh, Luqman Chuah Abdullah, Dayang Radiah Awang Biak, Sayed Siavash Madaeni, Zurina Zainal Abidin, Review of technologies for oil and gas produced water treatment, In Journal of Hazardous Materials, vol. 170, Issues 2–3, 2009, pp. 530–551, https://doi.org/10.1016/j.jhazmat.2009.05.044.

7. Epoian S. M., Blagodarnaia G. I., Dushkin S. S., Stashuk V. A. Povyshenie effektivnosti raboty sooruzheniy pri ochistke pit’evoy vody [Efficiency enhancement for water preparation plants]. Kh.: KHNAGKH Publ., 2013, 190 p. (in Russian).

8. Feofanov Yu.A., Khirsheva I. V. Povyshenie effektivnosti protsessa koagulyatsii malomutnykh tsvetnykh vod putem vvedeniya dobavok-utyazheliteley [Efficiency enhancement for coagulation process in low contaminant color waters by usage of additives]. Voda i ekologiya: problemy i resheniya [Water and Ecology: problems and solutions]. 2014, I. 2, pp. 24–30 (in Russian).

9. Macarena Munoz, Patricia Garcia-Muñoz, Gema Pliego, Zahara M.de Pedro, Juan A. Zazo, Jose A. Casas, Juan J. Rodriguez, Application of intensified Fenton oxidation to the treatment of hospital wastewater: Kinetics, ecotoxicity and disinfection, In Journal of Environmental Chemical Engineering, Volume 4, Issue 4, Part A, 2016, Pages 4107–4112, ISSN2213–3437, https://doi.org/10.1016/j.jece.2016.09.019.

10. Wojciech Baran, Ewa Adamek, Marcin Jajko, Andrzej Sobczak, Removal of veterinary antibiotics from wastewater by electrocoagulation, Chemosphere, Available online 30 November 2017, ISSN0045–6535, https://doi.org/10.1016/j.chemosphere.2017.11.165.

11. Mullakaev M. S. Ul’trazvukovaya intensifikatsiya tekhnologicheskikh protsessov dobychi i pererabotki nefti, ochistki neftezagryaznennykh vod i gruntov. Dokt. Diss. [Ultrasonic intensification of technological processes for oil production, refinery and reuse. Doct. Diss.]. Moscow, 2011. 419 p. (in Russian).

12. Abramov O. V., Abramov V. O., Weksler G. B., Zabotina E. V., Kashirskaya O. A., Kulov N. N., Shkolnikov A. V., Mullakaev M. S. Ul’trazvukovaya intensifikatsiya reagentnoy ochistki poverkhnostnykh stokov ot nefteproduktov [Ultrasonic intensification of chemical treatment of storm waters from oils]. Khimicheskaya tekhnologiya [Chemical technology]. 2008, I. 5, pp. 226–232 (in Russian).

13. Keremetin P. P., Parilov P. S., Mullakaev M. S., Weksler G. B., Kruchinina N. E., Abramov V. O. Opredelenie rezhimnykh i tekhnologicheskikh parametrov sonokhimicheskoy ochistki neftezagryaznennykh vod [Definition of oily waters sonochemical treatment modes and parameters]. Khimicheskaya tekhnologiya [Chemical technology]. 2010, I. 1, pp. 56–62 (in Russian).

14. Ksenofontov B. S., Ivanov M. V. Issledovanie vliyaniya vibratsii na flotatsionnuyu obrabotku stochnykh vod [Research of vibration influence on waste water flotation]. Nauka i obrazovanie [Science and Education]. 2011, I. 13, p. 31 (in Russian).

15. Devisilov V. A., Sharay E. Yu. Issledovanie povedeniya chastits v gidrodinamicheskom fil’tre na osnove chislennykh raschetov [A research of particles behaviour in hydrodynamic filter and its numerical modeling]. Izvestiya Samarskogo nauchnogo tsentra RAN [Herald of Samara research centre RAS]. 2010, I. 1–9, pp. 2216–2222 (in Russian).

16. Ivanov M. V., Ksenofontov B. S. Intensifikatsiya peremeshivaniya reagentov metodom vibroakusticheskogo vozdeystviya [Intensification of reagents mixing by vibration agitation]. Ekologiya i promyshlennost’ Rossii [Ecology and industry of Russia]. 2017, I. 21 (9), pp. 4–9. DOI: 10.18412/1816–0395–2017–9–4–9 (in Russian).

17. Genkin G., Waite T. D., Fane A. G., Chang S. The effect of vibration and coagulant addition on the filtration performance of submerged hollow fibre membranes. Journal of Membrane Science. 2006, V. 281, I. 1–2, pp. 726–734, Available at: https://doi.org/10.1016/j.memsci.2006.04.048.

18. Guo, X., Du, Z., Li, G., & Shu, Z. High Frequency Vibration Recovery Enhancement Technology in the Heavy Oil Fields of China. Society of Petroleum Engineers, 1 January 2004. doi:10.2118/86956-MS.

19. Ponomarev V. G., Iokimis E. G. Obrazovanie i ochistka stochnykh vod neftepererabatyvayushchikh zavodov [Production and treatment of wastewaters at oily industries]. Moscow, Soyuzdesign Publ., 2009. 256 p. (in Russian).

20. Xiaoxian Guo, Haining Lu, Jianmin Yang, Tao Peng, Resonant water motions within a recessing type moonpool in a drilling vessel, In Ocean Engineering, Volume 129, 2017, Pages 228–239, ISSN0029–8018, https://doi.org/10.1016/j.oceaneng.2016.11.030.

21. Juan G. Osorio, Koushik Sowrirajan, Fernando J. Muzzio, Effect of resonant acoustic mixing on pharmaceutical powder blends and tablets, In Advanced Powder Technology, Volume 27, Issue 4, 2016, Pages 1141–1148, ISSN0921–8831, https://doi.org/10.1016/j.apt.2016.03.025