Russian Federation
GRNTI 27.35 Математические модели естественных наук и технических наук. Уравнения математической физики
Purpose: Identification of risk factors that influence the outcome of the patient, their ranking on the contribution to the outcome of treatment, as well as determining the possibility of their additional diagnostic evaluation and correction in the deviation at the preoperative preparation stage with the subsequent construction of a prognostic model. Material and methods: The study included patients who received treatment in the surgical department in A. I. Burnasyan Federal Medical Biophysical Center from January 2009 to July 2017, including workers of nuclear facilities that are exposed to ionizing radiation in professional conditions. The study was conducted in 112 patients, 42 of whom (37.5 %) were men and 70 (62.5 %) women aged 25 to 85 years (59.6 ± 13.2). Among the persons included in the study, 25 men and 26 women were exposed to long-term exposure to ionizing radiation from external sources under production conditions during labor activity within the limits of annual maximum permissible doses, averaged 124.6 ± 10.7 mSv. The work experience under conditions of exposure to ionizing radiation ranged from 5 to 35 years, an average of 24 years. The mean age was 59.1 ± 13.4 years. At the end of hospitalization after surgical treatment, 51 patients were discharged (45.5 %), and 61 (54.5 %) died. In all patients, the parameters of the functioning of various organs and systems were collected, including taking into account the anamnestic data of oncological patients, with differentiation in the final outcome of surgical treatment. To determine the leading risk factors for the lethal outcome of the oncosurgical patient, the Fisher criterion χ2 was used. Based on the leading risk factors for constructing mathematical models, the logistic regression equation was used. The mathematical models were analyzed by researching the area under the ROC curves. Results: Using the Fisher criterion χ2, factors were determined by which the groups of survivors and died patients differ: patient age, body mass index, history of heart rhythm disorders, fraction of cardiac output, Hb level in the blood, presence of protein in urine, INR indicator in coagulograms. Based on the identified factors, twelve mathematical models were constructed using the binary logistic regression method, allowing patients to be divided into groups with the outcomes of hospitalization died / survived after surgery. A mathematical model with the best discriminating ability was chosen. Based on the prognostic model, a decision rule was designed that allows to rank patients into three groups: green (patients with a minimal risk of death), yellow (patients who need preoperative correction), red (patients with the maximum risk of death, decision about surgery is necessary to be solved on a consultation).
prognostic score, prognosis of lethal outcome of oncosurgical patients, radioactive exposure
С повышением продолжительности жизни населения повышается риск заболеваемости его сердечно-сосудистыми и онкологическими заболеваниями. Наряду, с этим онкологические заболевания, помимо генетической предрасположенности, связаны с профессиональной деятельностью человека, такой как судостроительная, оборонная, авиационная и атомная промышленности. При этом злокачественные новообразования, развивающихся под действием производственных канцерогенов, могут поражать практически любые органы и системы и нередко развиваются через годы и даже десятилетия после прекращения контакта с канцерогеном. В соответствии с современными представлениями, онкологический риск является одним из основных стохастических эффектов воздействия ионизирующего излучения на здоровье человека. Таким образом, в рамках мероприятий по преодолению последствий радиационного воздействия разработка методик, направленных на сохранение и восстановление здоровья лиц, подвергающихся
воздействию радиации и страдающих онкологическими заболеваниями, является актуальной задачей.
1. Occupational morbidity of employees of enterprises contracted for medical services to the FMBA of Russia. II Scientific and Practical Conference of the Federal Medical Biological Agency of Russia “Modern Aspects of Industrial Health in the System of the Federal Medical Biological Agency”, Moscow, 2006, Nov 24. Uiba VV, editor. Moscow; 2006. P. 115-118. (In Russ.).
2. Demin SN, Krotov VA. The main tasks of industrial and sanitary supervision at the current stage. Materials of the conference 80 years of the State Sanitary and Epidemiological Service of Russia and 55 years of the Federal Agency “Medbioextrem”. Krotova VA, editor. St. Petersburg; 2002:99-106. (In Russ.).
3. UNSCEAR 2000. Report to the General Assembly, with Scientific Annex. Annex I. Epidemiological evaluation of radiation-induced cancer. United Nations. New York; 2000:297-450.
4. Krivoruchko IA, Taraban IA. Repeated operations with intra-abdominal postoperative complication. Surgery Eastern Europe. 2012;(3):66-67. (In Russ.).
5. Davydov MI, Axel EM. Statistics of malignant neoplasms in Russia and CIS countries in 2007 // Vestn. N.N. Blokhin Russian Cancer Research Center of RAMS. 2009:20(3) (Appendix 1). (In Russ.).
6. Mohammed S, Van Buren IiG, McElhany A, et al. Delayed gastric emptying following pancreaticoduodenectomy: Incidence, risk factors, and healthcare utilization. World J Gastrointest Surg. 2017 Mar 27;9(3):73-81. DOI:https://doi.org/10.4240/wjgs.v9.i3.73.
7. Kukosh MV, Demchenko VI, Gomozov GI. Treatment-diagnostic algorithm for patients with intra-abdominal postoperative complications. Med. Almanac. 2011;(2):96-98. (In Russ.).
8. Bakurova EM, Mironova KA, Zuikov SA, Verkhova OA. Some pathochemical mechanisms of the development of hemic hypoxia in patients with gastric cancer. Tavrichesky Med. Biol. Bull. 2012;15(3-2):31-33. (In Russ.).
9. Bukhvalov AG, Lebedeva YuV, Grekova NM, Bordunovsky VN. Opportunities to reduce the number of postoperative complications and deaths in purulent-destructive complications of non-biliary acute severe pancreatitis. Fundamental Studies. 2015;(1-1):41-45. (In Russ.).
10. Colloca G, Monfardini S. A contribution to the future of geriatric oncology training: The SIOG Treviso advanced course // J Geriatr Oncol. 2017 Feb 27. pii: S1879-4068(17)30031-0. DOI:https://doi.org/10.1016/j.jgo.2017.02.005.
11. Vlasov PA, Zubenkov MV, Mykot EN. Correction of manifestations of surgical aggression in the early postoperative period. In: Actual questions of medical science Collection of scientific works of students and young scientists of the All-Russian conference with international participation: Abstracts. Yaroslavl State Medical Academy. 2009:233-4.
12. Gonzalez-Martinez S, Martin-Baranera M, Marti-Sauri I et al. Comparison of the risk prediction systems POSSUM and P-POSSUM with the Surgical Risk Scale: A prospective cohort study of 721 patients. Int J Surg. 2016 May;29:19-24. DOI:https://doi.org/10.1016/j.ijsu.2016.03.005.
13. Kobrinsky BA, Zarubina TV. Medical Informatics. Moscow: Academy. 2009. 192 p.
14. Rebrova OYu. Statistical analysis of medical data. Applying package application programs STATISTICA. Moscow: MediaSphere. 2000. 312 p.
15. Glantz Stanton A. Primer of BIOSTATISTICS. Moscow: Practica. 1999. 462 p.
16. Harrell FE, Califf RM, Pryor DP. Regression models for prognostic prediction: advantages, problems and suggested solutions. Stat Med. 1984;(3):143.
17. Hosmer DW, Lemeshow S. Applied Logistic Regression [electronic resource]. John Wiley and Sons. New York. 2000. 397 p.
18. Vasilyeva IV. [Estimation of accuracy of prognostic scales in the conditions of the specialized hospital in children with injuries]: dis. Dr. Sc. Med. Sci. Moscow; 2017. 153 p.