3H-THYMIDINE INFLUENCE ON DNA DOUBLE STRAND BREAKS INDUCTION IN CULTURED HUMAN MESENCHYMAL STEM CELLS
Abstract and keywords
Abstract (English):
Purpose: To estimate the impact of 3H-thymidine on DNA double strand breaks (DSBs) induction in cultured human mesenchymal stem cells (MSC). Material and methods: Isolation and cultivation of human bone marrow MSC was carried out according to a standard procedure. A sterile solution of 3H-thymidine with different specific radioactivity was added to the cell culture and incubated under the conditions of the CO2 incubator for 24 hours. The specific radioactivity of 3H-thymidine in the incubation medium was 50–1600 kBq/ml. To evaluate quantitatively the DSBs, an immunocytochemical analysis of the DSB marker – γH2AX foci histone was used. Additionally, the proportion of dividing cells was estimated using an immunocytochemical analysis of the cell proliferation marker, the Ki67 protein. Results: It was shown that 24 h incubation of human MSC in a culture medium results in a dose-dependent increase in γH2AX foci. There is a linear increase in the foci γH2AX in the range of 50–400 kBq/ml, after which the relative quantitative yield of foci per unit of specific radioactivity begins to decrease. In general, the dose-effect relationship is approximated by the quadratic function y = 3.13 + 50.80x – 12.38x2 (R2 = 0.99), where y is the number of foci γH2AX in the cell nucleus, and x is the specific radioactivity in 1000 kBq/ml. It was found that incubation of human MSC in a culture medium containing 800 and 1600 kBq/ml of 3H-thymidine resulted in a statistically significant decrease in the cells proliferative activity compared to the control of ~1.25 and 1.41 respectively. The peculiar biological limitation of tritium accumulation in the cell nucleus explains well the nonlinear character of the dependence of the formation of DSBs on the specific radioactivity of 3H-thymidine in the culture medium observed in our study. Conclusion: Quantitative analysis of γH2AX foci has proved to be a highly reproducible and highly sensitive method for evaluating the induction of DSBs in living cells under the action of 3H-thymidine. An analysis of the foci of γH2AX will be useful for accurate estimating the quantitative yield of DBS in living cells per dose of 3H-thymidine β-radiation. To do this, it is necessary to make a correct calculation of the doses received by the cells taking into account the microdistribution of 3H-thymidine in the cell volume and its accumulation in the DNA of living cells.

Keywords:
3H-thymidine, DNA double strand breaks, γH2AX foci, mesenchymal stem cells
Text

Тритий (3H), радиоактивный изотоп водорода, является одним из основных побочных продуктов ядерной промышленности, попадающих в окружающую среду [1, 2]. Тритий превращается в стабильный изотоп гелия путем β-распада, излучая низкоэнергетический электрон со средней энергией 5,7 кэВ и частицу антинейтрино. В среднем длина пробега β-частицы, испускаемой тритием, составляет всего 0,4–0,6 мкм, что меньше диаметра соматической клетки [3]. Таким образом, тритий представляет опасность для здоровья человека только при поступлении в организм. В качестве изотопа водорода тритий входит в состав молекул воды (оксид трития – НТО), неорганических и органических молекул (органически связанный тритий – OСT) [4].

References

1. Kotzer T., Trivedi A. Dosimetric implications of atmospheric dispersal of tritium near a heavy-water research reactor facility // Radiat. Prot. Dosim. 2001. Vol. 93. P. 61-66.

2. Okada S., Momoshima N. Overview of tritium. characteristics, sources, and problems // Health Phys. 1993. Vol. 65. P. 595-609.

3. Alloni D., Cutaia C., Mariotti L. et. al. Modeling dose deposition and DNA damage due to low-energy beta(-) emitters // Radiat. Res. 2014. Vol. 182. P. 322-330.

4. Melintescu A., Galeriu D. Uncertainty of current understanding regarding OBT formation in plants // J. Environ. Radioact. 2017. Vol. 167. P. 134-149.

5. Dingwall S., Mills C.E., Phan N.et al. Human health and the biological effects of tritium in drinking water. Prudent policy through science - addressing the ODWAC new recommendation // Dose Response. 2011. Vol. 9. P. 6-31.

6. Umata T. Estimation of biological effects of tritium // J. UOEH. 2017. Vol.39. P. 25-33.

7. Little M.P., Lambert B.E. Systematic review of experimental studies on the relative biological effectiveness of tritium // Radiat. Environ. Biophys. 2008. Vol. 47. P. 71-93.

8. Task Group on Radiation Quality Effects in Radiological Protection CoREICoRP. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (w(R)). A report of the International Commission on Radiological Protection // Ann ICRP. 2003. Vol. 33. P. 1-117.

9. Harrison J. Doses and risks from tritiated water and environmental organically bound tritium // J. Radiol. Prot. 2009. Vol. 29. P. 335-349.

10. Balonov M.I., Muksinova K.N., Mushkacheva G.S. Tritium radiobiological effects in mammals. review of experiments of the last decade in Russia // Health Phys. 1993. Vol. 65. P. 713-726.

11. Balonov M.I., Chipiga L.A. Estimation of the dose from the intake of tritium oxide in the human body. The role of inclusion of tritium in the organic matter of tissues // Radiats. Gigiena (‘Radiation Hygiene’). 2016. Vol. 9. № 4. P. 16-25. (In Russian. English abstracts. PubMed)

12. Kochetkov O.A., Monastyrskaya S.G., Kabanov D.I. Problems of rationing technogenic tritium // Saratov Journal of Medical Scientific Research. 2013. Vol. 9. № 4. P. 815-819. (In Russian. English abstracts. PubMed)

13. Korzeneva I.B., Kostuyk S.V., Ershova L.S. et al. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation // Mutation Res./Fundamental and Molecular Mechanisms of Mutagenesis. 2015. Vol. 779. P. 1-15.

14. Osipov A.N., Grekhova A., Pustovalova M. et al. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation // Oncotarget. 2015. Vol. 6. P. 26876-26885.

15. Osipov A.N., Pustovalova M., Grekhova A. et al. Low doses of X-rays induce prolonged and ATM-independent persistence of gammaH2AX foci in human gingival mesenchymal stem cells // Oncotarget. 2015. Vol. 6. P. 27275-27287.

16. Kotenko K.V., Bushmanov A.Y., Ozerov I.V. et al. Changes in the number of double-strand DNA breaks in Chinese hamster V79 cells exposed to gamma-radiation with different dose rates // Int. J. Mol. Sci. 2013. Vol. 14. P. 13719-13726.

17. Halazonetis T.D., Gorgoulis V.G., Bartek J. An oncogene-induced DNA damage model for cancer development // Science. 2008. Vol. 319. P. 1352-1355.

18. Chen J. Estimated yield of double-strand breaks from internal exposure to tritium // Radiat. Environ. Biophys. 2012. Vol. 51. P. 295-302.

19. Moiseenko V.V, Waker A.J, Hamm R.N, Prestwich W.V. Calculation of radiation-induced DNA damage from photons and tritium beta-particles. Part II. Tritium RBE and damage complexity // Radiat. Environ. Biophys. 2001. Vol. 40. P. 33-38.

20. Vignard J., Mirey G., Salles B. Ionizing-radiation induced DNA double-strand breaks. A direct and indirect lighting up // Radiother. Oncol. 2013. Vol. 108. № 3. P. 362-369.

21. Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation. a marker for DNA damage // Methods Mol. Biol. 2012. Vol. 920. P. 613-626.

22. Tsvetkova A., Ozerov I.V., Pustovalova M et al. γH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal stem cells during prolonged X-ray irradiation // Oncotarget. 2017. Vol. 8. № 38. P. 64317-64329.

23. Grekhova A.K., Eremin P.S., Osipov A.N. et al. Delayed processes of γH2AX foci formation and degradation in human skin fibroblasts irradiated with x-rays in low doses // Radiats. Biol. Radioekologia (‘Radiation biology. Radioecology’). 2015. Vol. 55. № 4. P. 395-401. (In Russian. English abstracts. PubMed)

24. Pustovalova M., Grekhova A., Astrelina T. et al. Accumulation of spontaneous γH2AX foci in long-term cultured mesenchymal stromal cells. // Aging (Albany NY). 2016. Vol. 8. № 12. P. 3498-3506.

25. Pustovalova M., Astrelina T.A., Grekhova A. et al. Residual γH2AX foci induced by low dose x-ray radiation in bone marrow mesenchymal stem cells do not cause accelerated senescence in the progeny of irradiated cells. // Aging (Albany NY). 2017. Vol. 9. №11. P. 2397-2410.

26. Paull T.T., Rogakou E.P., Yamazaki V. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage // Curr. Biol. 2000. Vol. 10. P. 886-895.

27. Lobrich M., Shibata A., Beucher A. et al. GammaH2AX foci analysis for monitoring DNA double-strand break repair. strengths, limitations and optimization // Cell Cycle. 2010. Vol. 9. P. 662-669.

28. Gonen R.G.U.. Alfassi Z.B.. Priel E. Production of DNA double strand breaks in human cells due to acute exposure to tritiated water (HTO). Conference of the Nuclear Societies in Israel. Dead Sea (Israel). 11-13 Feb 2014. P. 69-73.

29. Saintigny Y., Roche S., Meynard D., Lopez B.S. Homologous recombination is involved in the repair response of mammalian cells to low doses of tritium // Radiat. Res. 2008. Vol. 170. P. 172-83.

30. Ozerov I.V., Osipov A.N. Kinetic model of repair of DNA double-strand breaks in primary human fibroblasts under the action of rare-ionizing radiation with different dose rates // Kompiuternye issledovania i modelirovanie (‘Computer Studies and Modeling’). 2015. Vol. 7. № 1. P. 159-176. (In Russian. English abstracts. PubMed)

31. Ozerov I.V., Eremin P.S., Osipov A.N. et al. Features of changes in the number of foci of proteins γH2AX and Rad51 in human fibroblasts subjected to prolonged exposure to low-intensity X-rays // Saratov Scientific-Medical Journal. 2014. Vol. 10. № 4. P. 739-743. (In Russian. English abstracts. PubMed)

32. Ozerov I.V., Bushmanov A.Yu., Anchishkina N.A. et al. Induction and repair of DNA double-strand breaks in V79 cells under long-term exposure to low-intensity γ-radiation // Saratov Scientific-Medical Journal. 2013. Vol. 9. № 4. P. 787-791. (In Russian. English abstracts. PubMed)

33. Duque A., Rakic P. Different effects of BrdU and 3H-Thymidine incorporation into DNA on cell proliferation, position and fate // J. Neurosci. 2011. Vol. 31. № 42. P. 15205-15217.

34. Hoy C.A, Lewis E.D, Schimke R.T. Perturbation of DNA replication and cell cycle progression by commonly used [3H]thymidine labeling protocols // Mol. Cell Biol. 1990 Apr. Vol. 10. № 4. P. 1584-1592.

35. Hu V.W., Black G.E., Torres-Duarte A., Abramson F.P. 3H-thymidine is a defective tool with which to measure rates of DNA synthesis // FASEB J. 2002, Vol. 16. № 11. P. 1456-1457.

36. Jurikova M.. Danihel L., Polak S.. Varga I. Ki67, pcna, and mcm proteins. Markers of proliferation in the diagnosis of breast cancer // Acta Histochemica 2016. Vol. 118. P. 544-552.

Login or Create
* Forgot password?