A.I. Burnasyan Federal Medical Biophysical Center (FMBC) FMBA (Leading Researcher)
Russian Federation
Russian Federation
GRNTI 29.15 Ядерная физика
Purpose: Development of the bremsstrahlung spectrum reconstruction method of medical electron linear accelerators (ELA) with different field sizes on the base of the deep dose distributions in a water phantom and determination of photon spectra for Varian Trilogy accelerator 6 MV. Material and methods: The proposed methodology is based on the use of dose kernels algorithm of point monoenergetic monodirectional source (pencil beam (PB)) for the deep dose distribution calculation, created different cross-section beams of in a water phantom, and experimental measurements of these distributions. For solving the inverse problem is applied Toolbox routines 'ptimtool knowing mathematical package MATLAB to solve. Results: Bremsstrahlung energy spectrum generated medical accelerator Varian Triology with different sizes of square fields from 3×3 up to 40×40 cm and average energy photons, depending on the size of the fields were received. Dose kernels for a set of defined energies PB were calculated. Depth dose distribution in a water phantom, calculated using the obtained spectra and dose kernels agree well with measurement dose distributions. Conclusion: The proposed technique reconstruction of bremsstrahlung spectrum of electron linear accelerator is adequate. Average energy spectra of bremsstrahlung photons for Varian Trilogy Accelerator in regime 6 MV varies from 1.71 to 1.43 MeV depending on the field size.
radiation therapy, medical accelerators, bremsstrahlung, deep dose distributions, reconstruction of the photon spectrum
Постоянно возрастающие требования к точности дозиметрического планирования и значениям отпускаемых доз в дистанционной лучевой терапии (ЛТ) и в радиационных технологиях обычно приводят к необходимости определения выходных энергетических спектров тормозного излучения, генерируемых ЛУЭ. Эти спектры существенным образом зависят от конструкции гантри ЛУЭ и системы коллимации пучков. Кроме того, во многих ЛУЭ для создания однородного распределения дозы, как правило, на глубине 10 см в водном фантоме, на пути пучков располагают сглаживающие фильтры. Они имеют сложную конусообразную форму, что приводит к увеличению поглощения фотонов с уменьшением угла между направлением их траектории и геометрической осью пучка. В результате действующий спектр фотонов становится зависимым от размеров поля.