FE/O RATIO BEHAVIOR AS AN INDICATOR OF SOLAR PLASMA STATE AT DIFFERENT SOLAR ACTIVITY MANIFESTATIONS AND IN PERIODS OF THEIR ABSENCE
Abstract and keywords
Abstract (English):
We report the results of the investigation into plasma physical characteristics at various solar activity manifestations and in periods of their absence. These results have been obtained from quantitative estimates of the relative abundance of Fe/O ions in different energy ranges. Maximum values of the Fe/O ratio is shown to correspond to particle fluxes from impulsive flares for ions with energies <2 MeV/n (the most significant manifestation of the FIP effect). In particle fluxes from gradual flares, the Fe/O value decreases smoothly with ion energy and is noticeably inferior to values of fluxes in impulsive events. We have established that the properties of flares of solar cosmic rays indicate their belonging to a separate subclass in the total population of gradual events. Relying on variations in the abundance of Fe/O ions, we propose an xplanation of the solar plasma behavior during the development of flares of both classes. Magnetic clouds (a separate type of coronal mass ejections (CME)), which have regions of turbulent compression and are sources of strong geomagnetic storms, exhibit a relative composition of Fe ions comparable to the abundance of Fe in ion fluxes from gradual flares. We have found out that the Fe/O value can be used to detect penetration of energetic flare plasma into the CME body at the initial phase of their joint development and to estimate its relative contribution. During solar minimum with complete absence of sunspots, the Fe/O ratio during periods of “quiet” solar wind show absolutely low values of Fe/O=0.004–0.010 in the energy range from 2–5 to 30 MeV/n. This is associated with the manifestation of the cosmic ray anomalous component, which causes an increase in the intensity of ion fluxes with a high first ionization potential, including oxygen (O), and elements with a low first ionization potential (Fe) demonstrate weakening of the fluxes. As for particles with higher energies (Ek>30 MeV/n), the Fe/O increase is due to the decisive influence of galactic cosmic rays on the composition of impurity elements in the solar wind under solar minimum conditions. The relative content of heavy elements in galactic cosmic rays 30–500 MeV/n is similar to values in fluxes from gradual flares during high solar activity. During solar minimum without sunspots, the behavior of Fe/O for different ion energy ranges in plasma flows from coronal holes (CH) and in the solar wind exhibits only minor deviations. At the same time, plasma flows associated with the disturbed frontal CH region can be sources of moderate geomagnetic storms.

Keywords:
solar activity, energy spectra, FIP effect, Fe/O ratio
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

Солнце обладает обширным по своим характеристикам диапазоном активных явлений. Наиболее мощными являются солнечные вспышки, которые часто сопровождаются корональными выбросами массы (КВМ). Эти процессы в основном и определяют состояние космической погоды. По целому ряду параметров вспышки разделяются на два класса. Относительно компактные и кратковременные вспышки относятся к импульсным событиям, а занимающие больший объем солнечной атмосферы продолжительные явления — к длительным вспышкам. Импульсные вспышки приводят к сильному возрастанию отношения изотопов 3He/4He (относительно корональных значений усиление в 103 раз), а также к высокому отношению Fe/O~1.3 и большим зарядовым состояниям ионов (например, Q(Fe)>16), что свидетельствует о высокой температуре в области их источников.

Основным процессом ускорения солнечных энергичных частиц непосредственно в области вспышек является прямое ускорение электрическим полем при диссипации магнитных полей в токовых слоях активной области в зоне магнитного пересоединения с последующим стохастическим ускорением вследствие развития различных плазменных неустойчивостей [Алтынцев и др., 1982; Прист, Форбс, 2005; Somov, 2013].

Длительные вспышки возникают в большом объеме солнечной короны вследствие динамической перестройки структуры магнитных полей и в течение нескольких часов демонстрируют повышенное излучение в наиболее энергичных диапазонах спектра. Дополнительным источником ускорения частиц, связанным с развитием высокоскоростных КВМ, может быть появление ударных волн в верхних слоях короны и в межпланетной среде. Потоки вспышечных ускоренных частиц в длительных событиях обеднены электронами и обогащены энергичными протонами. В таких явлениях наблюдается понижение отношения Fe/O~0.1 по сравнению с импульсными событиями и меньшие зарядовые состояния ионов Q(Fe)~14, соответствующие корональным температурам (2÷3)106 K [Li, Zank, 2005].

Приведенные характерные значения некоторых параметров позволяют установить принадлежность вспышек к тому или иному классу [Reames, 1995], хотя в настоящее время считается, что представление о делении вспышек и потоков частиц от них на два класса является несколько упрощенным [Klecker, 2013], поскольку в некоторых явлениях разных классов наблюдается ряд общих признаков.

Для солнечных вспышек представленных классов проведено исследование состава ускоренных частиц плазмы с помощью анализа энергетических спектров ионов Fe и O в широком интервале энергий и полученных с их помощью значений Fe/O.

Отношение Fe/O является хорошим индикатором физического состояния изучаемой среды и мерой проявления FIP-эффекта, суть которого состоит в следующем. Состав элементов в фотосфере, достаточно надежно определяемый спектроскопическими методами, является вполне однородным по всей видимой солнечной поверхности, однако обилие примесных элементов в структурных образованиях короны Солнца и в СВ оказывается в разной степени зависящим от величины FIP по отношению к их концентрациям в фотосфере. Установлено, что фракционирование примесных элементов по признаку FIP осуществляется в верхней области хромосферы Солнца. Элементы с низким FIP (<10 эВ — Fe, Mg, Si, K и др.) легко ионизуются и выносятся под действием пондеромоторной силы альвеновских волн в верхнюю атмосферу Солнца [Laming, 2004], где эти ионы способны накапливаться преимущественно в центральных частях замкнутых магнитных структур активных областей. Альфеновские волны генерируются в подножиях этих структур под влиянием случайных движений плазмы в фотосферных слоях. Элементы с высоким FIP (>10 эВ — C, N, O и др.) остаются нейтральными и их содержание не изменяется. Обилие ионов Fe как элемента с низким FIP (<10 эВ) в верхней атмосфере Солнца повышено в несколько раз, в то время как содержание О остается близким фотосферному, поскольку его FIP превышает 10 эВ [Томозов, 2012; 2013]. Ранее в работах [Reames et al., 1994; Reames, Ng, 2004; Tylka et al., 2005; Wang et al., 2006; Kahler et al., 2012] приводились результаты определений значений Fe/O в потоках ускоренных частиц от различных солнечных вспышек. Измерения отношения Fe/O выполнялись лишь в одном или двух интервалах энергий ионов, что оказывается недостаточным для выявления зависимости Fe/O от энергии. Вследствие этого представляется важным получение количественных оценок отношения Fe/O в целом ряде интервалов энергий для различных событий, что позволит выявить новые свойства потоков частиц.

Для построения спектров энергий ионов нами были использованы данные наблюдений Солнца на космических аппаратах (КА) ACE/(ULEIS, EPAM, SIS, CRIS), WIND/EPACT/LEMT. Общий диапазон энергий частиц составил 0.04–287.23 МэВ/н. Было выбрано семь отдельных диапазонов энергий со средними значениями 0.06, 0.23, 1.81, 5.30, 13.00, 30.90 и 75.69 МэВ/н. Энергетические спектры ионов O и Fe в потоках частиц с временным разрешением 1 ч были получены с помощью опции «Multi-source spectral plots of energetic particle fluxes» на сайте OMNI Web Plus Browser [https://omniweb.gsfc.nasa.gov/ftpbrowser/flux_spectr_m.html]. Энергия ионов выражена в МэВ/н, потоков — в 1/(с·см2·стер·МэВ/н). С использованием значений потоков ионов Fe и O было рассчитано их относительное содержание в потоках частиц в семи интервалах энергий.

Целью настоящей работы является исследование характеристик активных процессов на Солнце, включая вспышки и КВМ, а также особенностей состава солнечной плазмы при отсутствии активных областей по динамике отношения Fe/O с использованием данных наблюдений КА вблизи орбиты Земли.

References

1. Altyntsev A.T., Banin V.G., Kuklin G.V., Tomozov V.M. Solnechnye vspyshki [Solar Flares]. Moscow: Nauka Publ., 1982. 246 p. (In Russian).

2. Barkhatov N.A., Revunova E.A., Vinogradov A.B. Evolution of orientation of solar wind magnetic clouds, and manifestation of seasonal dependence in their geomagnetic activity. Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo [Vestnik of Lobachevsky University of Nizhni Novgorod]. 2014, no. 4 (1), pp. 106-113. (In Russian).

3. Barkhatov N.A., Vinogradov A.B., Levitin A.E., Revu- nova E.A. Geomagnetic substorm activity associated with magnetic clouds. Geomagnetism and Aeronomy. 2015, vol. 55, no. 5, pp. 596-602. DOI:https://doi.org/10.1134/S0016793215050023.

4. Bazilevskaya G.A., Stozhkov Yu.I. Energichnye chastitsy i kosmicheskie luchi: galakticheskie, geliosfernye i solnechnye kosmicheskie luchi. Plazmennaya geliofizika [Energetic particles and cosmic rays: galactic, heliospheric and solar cosmic raya]. Eds. Zeleny L.M., Veselovsky I.S. V. 1. Moscow, 2008. P. 345-357. (In Russian).

5. Cliver E.W., Gopalswamy E., Webb D.F. History of research on solar energetic particle (SEP) events: The evolving paradigm. Proc. the 2008 IAU Symposium. No. 257. Universal Heliophysical Processes. 2009, pp. 401-412.

6. Desai M. I., Mason G. M., Mazur J.E., Dwyer J.R. Solar cycle variations in the composition of the suprathermal heavy-ion population near 1 AU. Astrophys. J. 2006, vol. 645, pp. L81-L84.

7. Dierckxsens M., Tziotziou K., Dalla S., Patsou I., Marsh M.S., Crosby N.B., Malandraki O., Tsiropoula G. Relationship between solar energetic particles and properties of flares and CME: statistical analysis of solar cycle 23 events. Solar Phys. 2015, vol. 290, no. 3. pp. 841−874. DOI:https://doi.org/10.1007/s11207-014-0641-4.

8. Driel-Gesztelyi L. van, Culhane J.L. Magnetic flux emergence, activity, eruptions and magnetic clouds: following magnetic field from the Sun to the heliosphere. Space Sci. Rev. 2009, vol. 144, iss. 1, pp. 351-381. DOI:https://doi.org/10.1007/s11214-008-9461-x.

9. Fisk L.A., Kozlovsky B., Ramaty R. An interpretation of the observed oxygen and nitrogen enhancement in low energy cosmic rays. Astrophys. J. Let. 1974, vol. 190, pp. 35-38.

10. Garrard T.L., Christian E.R., Mewaldt R.A., Ormes J.F., Stone E.C. The advanced composition explorer mission. Proc. 25th International Cosmic Ray Conference. Durban, South Africa, 30 July - 6 August, 1997. 1997, vol. 1, pp. 105-108.

11. Gonzalez W.D., Tsurutani B.T., Clua de Gonzalez A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, vol. 88, pp. 529-562. DOI:https://doi.org/10.1023/A:1005160129098.

12. Gosling J.T., Pizzo V.J. Formation and evolution of corotating interaction regions and their three-dimensional structure. Space Sci. Rev. 1999, vol. 89, pp. 21-52. DOI:https://doi.org/10.1023/A:1005291711900.

13. Kahler S.W., Cliver E.W., Tylka A.J., Dietrich W.F. A comparison of ground level event e/p and Fe/O ratios with associated solar flare and CME characteristics. Space Sci. Rev. 2012. vol. 171, no. 1-4, pp. 121−139. DOI:https://doi.org/10.1007/s11214-011-9768-x.

14. Kallenrode M. B. Current views on impulsive and gradual solar energetic particle events. J. Phys. G: Nuclear and Particle Phys. 2003, vol. 29, pp. 965-981. DOI:https://doi.org/10.1088/0954-3899/29/5/316.

15. Kasinsky V.V., Tomozov V.M. Comparison of X-ray coronal structures with dynamics and morphology of the photospheric activity. Astronomicheskii tsirkulyar [Astronomical Circular]. 1974, no. 806, pp. 1-3. (In Russian).

16. Klecker B. Current understanding of SEP acceleration and propagation. J. Phys.: Conf. Ser. 2013, vol. 409, no. 1, pp. 1−15. DOI:https://doi.org/10.1088/1742-6596/409/1/012015.

17. Laming J.M. A unified picture of the first ionization potential and inverse first ionization potential effects. Astrophys. J. 2004, vol. 614, pp. 1063-1072. DOI:https://doi.org/10.1086/423780.

18. Li G., Zank G.P. Mixed particle acceleration at CME-driven shocks and flares. Geophys. Res. Let. 2005, vol. 32, no. 2, pp. L02101. DOI:https://doi.org/10.1029/2004GL021250.

19. Minasyants G.S., Minasyants T.M. Some peculiarities in dynamics of particle fluxes of solar cosmic rays. XVIII Vserossiskaya ezhegodnaya konferentsiya po fizike Solntsa “Solnechnaya I solnechno-zemnaya fizika - 2014” [Proc. XVIII National Conference on Solar Physics “Solar and Solar-Terrestrial Physics - 2014]. Saint Petersburg, Pulkovo Observatory, 2014, pp. 287−290. (In Russian).

20. Minasyants G.S., Minasyants T.M., Tomozov V.M. On some features in dynamics of energy spectra in flare fluxes of solar cosmic rays. Izvestiya Krymskoi astrofizicheskoi observatorii [Bull. of the Crimean Astrophysical Observatory]. 2016a, vol. 112, no.1, pp. 71-77. (In Russian).

21. Minasyants G.S., Minasyants T.M., Tomozov V.M. Variations of Fe/O ratio during the disturbed period of SCR flux development. Manifestation of FIP effect in SCR composition. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy] 2016b, vol. 56, no. 2, pp. 217-227. (In Russian).

22. Minasyants G.S., Minasyants T.M., Tomozov V.M. Dynamics of Fe/O ratio during variations of ion energy in fluxes of accelerated solar particles. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2016c, vol. 56, no. 6, pp. 690-699. (In Russian).

23. Minasyants G.S., Minasyants T.M., Tomozov V.M. Fe/O ratio variations during the disturbed stage in the development of the solar cosmic ray fluxes. Manifestations of the first ionization potential effect in the solar cosmic ray composition. Geomagnetism and Aeronomy. 2016, vol. 56, no. 2, pp. 203-212. DOI:https://doi.org/10.1134/S0016793216020110.

24. Mordvinov A.V., Tomozov V.M., Fainshtein V.G. Effect of electron distribution function on dynamics of collisionless plasma expansion into background plasma of lower density. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics]. 1985, no. 6, pp. 10-15. (In Russian).

25. Nitta N.V., Reames D.V., De Rosa M.L., Liu Y. Solar sources of impulsive solar energetic particle events and their magnetic field connection to the Earth. Astrophys. J. 2006, vol. 650, pp. 438-450. DOI:https://doi.org/10.1086/507442.

26. Obridko V.N., Shelting B.D., Livshits I.M., Askerov A.B. Correlation between contrast of coronal holes and solar wind characteristics. Astronomicheskii zhurnal [Astron. J.] 2009, vol. 86, no. 11, pp. 1125-1132. (In Russian).

27. Pallavicini R., Serio S., Vaiana G. A survey of soft X-ray limb flare images - The relation between their structure in the corona and other physical parameters. Astrophys. J. Part 1. 1977, vol. 216, pp. 108-122.

28. Priest E.R., Forbes T. Magnitnoe peresoedinenie. Magnitogidrodinamicheskaya teoriya i prilozheniya [Magnetic reconnection. Magnetohydrodynamic theory and applications]. Moscow, Fizmatlit Publ., 2005. 591 p. (In Russian).

29. Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996-2009): Catalog and summary of properties. Solar Phys. 2010, vol. 264, pp. 189-237. DOI:https://doi.org/10.1007/s11207-010-9568-6.

30. Reames D.V., Meyer J.P., von Rosenvinge T.T. Energetic particle abundances in impulsive solar flare events. Astrophys. J. Suppl. Ser. 1994, vol. 90, pp. 649−667.

31. Reames D.V. Solar energetic particles: A paradigm shift. Rev. Geophys. 1995, vol. 33, no. S1, pp. 585−589. DOI:https://doi.org/10.1029/95RG00188.

32. Reames D.E. Energetic particles composition. Solar and galactic composition: A Joint SOHO/ACE Workshop. Bern, Switzerland, 6-9 March, 2001 (AIP Conf. Proc.) 2001, vol. 598, pp. 153-164.

33. Reames D.V., Ng C.K. Heavy-element abundances in solar energetic particle events. Astrophys. J. 2004, vol. 610, no. 1. pp. 510-522. DOI:https://doi.org/10.1086/421518.

34. Reames D.V. The two sources of solar energetic particles. Space Sci. Rev. 2013, vol. 175, no. 1, pp. 53−92. DOI:https://doi.org/10.1007/s11214-013-9958-9.

35. Reames D.V. Element abundances in solar energetic particles and the solar corona. Solar Phys. 2014, vol. 289, no. 3. pp. 977−993. DOI:https://doi.org/10.1007/s11207-013-0350-4.

36. Roth I., Temerin M. Selective ion acceleration in impulsive solar flares. Adv. Space Res. 1998, vol. 21, pp. 591-595.

37. Somov B.V. Plasma Astrophysics: Reconnection and Flares. Springer: New York. 2013. 504 p. DOI:https://doi.org/10.1016/S0273-1177(97)00968-X.

38. Tomozov V.M. FIP effect as an indicator of dynamic processes in the solar atmosphere and interplanetary medium. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2012, iss. 19, pp. 19−35. (In Russian).

39. Tomozov V.M. On some regularities in chemical composition distribution in stellar atmospheres. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2013, iss. 23, pp. 23−32. (In Russian).

40. Tomozov V.M., Strokin N.A. Comparative analysis of effectiveness of proton and electron acceleration in laboratory and solar plasma. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2015, vol. 55, no. 2, pp. 161−167. (In Russian). DOI: 10.7868/ S0016794015020169.

41. Torsti J., Kocharov L., Innes D.E., Laivola J., Sahla T. Injection of energetic protons during solar eruption on 1999 May 9: Effect of flare and coronal mass ejection. Astron. Astrophys. 2001, vol. 365, pp. 198-203. DOI:https://doi.org/10.1051/0004-6361: 20000148.

42. Tylka A.J., Cohen C.M.S., Dietrich W.F., Lee M.A., Maclennan C.G., Mewaldt R.A., Ng C.K., Reames D.V. Shock geometry, seed populations and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 2005, vol. 625, no. 1, pp. 474−495. DOI:https://doi.org/10.1086/429384.

43. Wang Y.-M, Pick M., Mason G.M. Coronal holes, jets and the origin of 3He-rich particle events. Astrophys. J. 2006, vol. 639, no. 1, pp. 495-509. DOI:https://doi.org/10.1086/499355.

44. Yermolaev Yu.I., Yermolaev M.Yu. Solar and interplanetary sources of geomagnetic storms: space weather aspects. Geophys. Processes and Biosphere. 2009, vol. 8, no. 1, pp. 5-35. (In Russian).

45. Yutian Chi, Chenglong Shen, Yuming Wang, Pinzhong Ye, Wang S. Statistical Study of the Interplanetary Coronal Mass Ejections from 1996 to 2014. arXiv: 1504.07849v1 [astro-ph.SR] 29 Apr 2015 P.1-9.

46. Zeldovich M.A., Ishkov V.N., Logachev Yu.I., Kechkemeti K. Ion composition of low-energy particle fluxes at 1 a.u. during quiet period of solar activity. 31 Vserossiiskaya konferentsiya po kosmicheskim lucham [31st National Conference on Cosmic Rays]. Moscow, MSU, 2010, pp. 1-7. (In Russian).

47. Zhang J., Dere K.P., Howard R.A., Kundu M.R., White S.M. On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 2001, vol. 559, no. 1, pp. 452-462. DOI:https://doi.org/10.1086/322405.

48. Zurbuchen T.H., Weberg M., von Steiger R., Mewaldt R.A., Lepri S.T., Antiochos S.K. Composition of coronal mass ejections. Astrophys. J. 2016, vol. 826, no. 10, 8 p. DOI:https://doi.org/10.3847/0004-637X/826/1/10.

49. URL: https://omniweb.gsfc.nasa.gov/ftpbrowser/flux_spectr_m.html (accessed 18.10.2017).

50. URL: http://www.srl.caltech.edu/sampex/Data-Center/DA-TA/EventSpectra (accessed 18.10.2017).

51. URL: https://wind.nasa.gov/fullcatalogue.php (accessed 18.10.2017).

Login or Create
* Forgot password?