FIRST RESULTS OF REGISTERING IONOSPHERIC DISTURBANCES OBTAINED WITH SIBNET NETWORK OF GNSS RECEIVERS IN ACTIVE SPACE EXPERIMENTS
Abstract and keywords
Abstract (English):
Global and regional networks of GNSS receivers have been successfully used for geophysical research for many years; the number of continuous GNSS stations in the world is steadily growing. The article presents the first results of the use of a new regional network of GNSS stations (SibNet) in active space experiments. The Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) has established this network in the South Baikal region. We describe in detail SibNet, characteristics of receivers in use, parameters of antennas and methods of their installation. We also present the general structure of observation site and the plot of coverage of the receiver operating zone at 50–55° latitudes by radio paths. It is shown that the selected location of receivers allows us to detect ionospheric irregularities of various scales. The purpose of the active space experiments was to reveal and record parameters of the ionospheric irregularities caused by effects from jet streams of Progress cargo spacecraft. The mapping technique enabled us to identify weak, vertically localized ionospheric irregularities and associate them with the Progress spacecraft engine impact. Thus, it has been shown that the SibNet deployed in the Southern Baikal region is an effective instrument to monitor ionospheric conditions.

Keywords:
ionosphere, GNSS, SibNet, Progress
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

Для исследования ионосферы в настоящее время широко применяют сети наземных приемников глобальных навигационных спутниковых систем (ГНСС), таких как ГЛОНАСС и GPS. Каждый приемник проводит одновременное слежение более чем за двумя десятками спутников ГНСС. Сопровождение сигналов от каждого спутника происходит минимум на двух независимых частотах, что позволяет по измерениям приемника рассчитывать вариации полного электронного содержания (ПЭС) в ионосфере. Таким образом, развертывание в регионе сети из нескольких десятков приемников обеспечивает возможность одновременного просвечивания ионосферы сотнями лучей спутник—приемник. Указанное преимущество, а также относительно невысокая цена и простота развертывания сети приводит к тому, что использование ГНСС в геофизических исследованиях оказывается целесообразным.

Отдельные плотные сети приемных станций ГНСС, например сеть GEONET в Японии, уже много лет широко используются в качестве разнесенного инструмента мониторинга состояния ионосферы. По данным таких сетей проводятся исследования реакции ионосферы на солнечные вспышки и затмения [Afraimovich, 2000; Liu, Lin, 2004; Afraimovich et al., 2007], геомагнитные бури [Perevalova et al., 2008; Shimeis et al., 2015] и мощные техногенные воздействия [Ding et al., 2014; Zherebtsov, Perevalova, 2016]. В последние годы большое внимание уделяется анализу мерцаний сигналов ГНСС [Prikryl et al., 2010; Jiao et al., 2013; Spogli et al., 2013], что позволяет получать информацию о параметрах мелкомасштабных ионосферных неоднородностей, приводящих к рассеянию радиосигналов и снижению качества радиосвязи. Результаты всех этих исследований, с одной стороны, помогают более детально разобраться в физике наблюдаемых явлений, а с другой, позволяют улучшать функционирование самих ГНСС: повышать точность определения координат, снижать вероятность сбоев и т. п. [Prikryl et al., 2010; Demyanov, Yasyukevich, 2011; Demyanov et al., 2012; Lejeune et al., 2012; Jiao et al., 2013]. Для сейсмоопасных регионов (в частности, для Байкальской рифтовой системы) важной прикладной задачей является также поиск откликов и возможных предвестников землетрясений [Сейсмоионосферные…, 2012]. Кроме того, совокупность всех сетей станций ГНСС может выступать в качестве всепланетного инструмента исследования околоземного космического пространства [Afrai-movich et al., 2013]. Однако распределение приемников ГНСС по земному шару крайне неравномерно. Очень низка плотность ГНСС-сетей в России. До недавнего времени на большой территории Байкальского региона стабильно работали всего две станции ГНСС: BADG и IRKT. В 2012 г. в ИСЗФ СО РАН начато развертывание сети постоянно действующих двухчастотных приемников ГНСС.

В силу уникальных природных особенностей (оз. Байкал, система рифтовых разломов, высота над уровнем моря, большое число солнечных дней в году и др.) район Прибайкалья является крайне интересным для всестороннего исследования. Это определило создание в регионе развитого комплекса гелиогеофизических инструментов, на которых ведутся регулярные наблюдения Солнца, космической погоды, магнитного поля Земли, ионосферы [Сейсмоионосферные…, 2012; Институт..., 2015]. Сеть приемников ГНСС дополнила комплекс инструментов ИСЗФ СО РАН.

В 2009–2014 гг. с помощью этого комплекса [Институт…, 2015; Сейсмоионосферные…, 2012] (вблизи оз. Байкал), проводилась серия активных космических экспериментов (КЭ) «Радар—Прогресс» по регистрации ионосферных эффектов, вызванных включением сближающе-корректирующих двигателей (СКД) транспортно-грузовых кораблей (ТГК) серии «Прогресс» после отстыковки от международной космической станции (МКС). По согласованию с ИСЗФ СО РАН включение двигательной установки (ДУ) происходило при пролете ТГК над обсерваториями Института [Khakhinov et al., 2011, 2012; Борисов и др., 2012; Хахинов и др., 2010, 2012, 2013,]. ТГК этом был ориентирован так, что реактивная струя была направлена на наземные инструменты. Целью эксперимента было обнаружение и одновременная регистрация эффектов воздействия струи с помощью различных геофизических инструментов [Лебедев и др., 2014; Еселевич и др., 2016; Липко и др., 2016; Клунко и др., 2016; Белецкий и др. 2016; Шпынев и др., 2017]. Наряду с другими инструментами для регистрации эффектов работы двигателей ТГК использовалась и новая региональная сеть станций ГНСС (SibNet), создаваемая в ИСЗФ СО РАН. Описанию и первым результатам использования ГНСС-сети SibNet для обнаружения ионосферного отклика на работу реактивных двигателей ТГК «Прогресс» посвящена настоящая статья.

References

1. Afraimovich E.L. GPS global detection of the ionospheric response to solar flares. Radio Sci. 2000, vol. 35, no. 6, pp. 1417-1424.

2. Afraimovich E.L., Astafyeva E.I., Demyanov V.V., Edemsky I.K., Gavrilyuk N.S., Ishin A.B., Kosogorov E.A., Leonovich L.A., Lesyuta O.S., Palamarchuk K.S., Pere-valova N.P., Polyakova A.S., Smolkov G.Ya., Voeykov S.V., Yasyukevich Yu.V., Zhivetiev I.V. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Climate. 2013, no. 3, pp. A27_p1-A27_p19. DOI:https://doi.org/10.1051/swsc/2013049.

3. Afraimovich E.L., Perevalova N.P. GPS-monitoring verhnei atmosfery Zemli [GPS-monitoring of the Earth's upper atmosphere]. Irkutsk, 2006, 480 p. (In Russian).

4. Afraimovich E.L., Voeykov S.V., Perevalova N.P., Vodyannikov V.V., Gordienko G.I., Litvinov Yu.G., Yakovets A.F. Ionospheric effects of the March 29, 2006, solar eclipse over Kazakhstan. Geomagnetism and Aeronomy. 2007, vol. 47, no. 4, pp. 461-469.

5. Astafyeva E., Rolland L., Lognonne P., Khelfi K., Yahagi T. Parameters of seismic source as deduced from 1 Hz ionospheric GPS data: Case study of the 2011 Tohoku-Oki event. J. Geophys. Res. Space Phys. 2013, vol. 118, pp. 5942-5950. DOI:https://doi.org/10.1002/jgra.50556.

6. Beletsky A.B., Mikhalev A.V., Khakhinov V.V., Lebedev V.P. Optical manifestation of functioning onboard engines of low-orbit spacecraft. Solar-Terr. Phys. 2016, vol. 2, no. 4, pp. 85-91.

7. Borisov B.S., Gabdullin F.F., Garkusha V.I., Korsun A.G., Kurshakov M.Yu., Strashinsky V.A., Tverdokhlebova E.M., Khakhinov V.V. Radiophysical characteristics of low-orbit spacecraft plasma environment revealed by space experiments. Nelineinyi mir [J. Nonlinear World]. 2012, vol. 10, no. 10, pp. 700-709. (In Russian).

8. Demyanov V.V., Afraimovich E.L., Jin S. An evaluation of potential solar radio emission power threat on GPS and GLONASS performance. GPS Solutions. 2012, vol. 16, no. 4, pp. 411-424.

9. Demyanov V.V., Yasyukevich Yu.V. Deterioration in the accuracy of GPS system positioning due to the effect of ionospheric bubbles. Geomagnetism and Aeronomy. 2011, vol. 51, no. 7, pp. 1010-1013.

10. Ding F., Wan W., Mao T., Wang M., Ning B., Zhao B., Xiong B. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou-10 spacecraft. Geophys. Res. Let., 2014, vol. 41, pp. 3351-3358.

11. Eselevich M.V., Khakhinov V.V., Klunko E.V. Parameters of optical signals registered with the AZT-33IK telescope in active radar-progress space experiment. Solar-Terr. Phys. 2016, vol. 2, no. 3, pp. 32-43.

12. GREIS: GNSS Receiver External Interface Specification. Version 3.2.0. Javad GNSS. 2010. Available at: www.javad. com/jgnss/support/manuals.html (accessed 12 May 2017).

13. Hofmann-Wellenhof B., Lichtenegger H., Collins J. Global Positioning System: Theory and Practice. New York. Springer-Verlag Wien, 1992, p. 327.

14. Institut solnechno-zemnoi fiziki: sozdanie i razvitie. Ed. Zherebtsov G.A. [Institute of Solar-Terrestrial Physics: Foundation and Development. Ed. Zherebtsov G.A.]. Novosibirsk: SB RAS Publ., 2015, 610 p.

15. Ishin A.B., Perevalova N.P., Voeykov S.V., Khakhinov V.V. Complex analysis of the ionospheric response to operation of Progress cargo spacecraft according to the data of GNSS receivers in Baikal region. Solar-Terr. Phys. 2017, vol. 3, no. 4, pp. 93-103. (In Russian).

16. Jiao Y., Morton Y.T., Taylor S., Pelgrum W. Characterization of high-latitude ionospheric scintillation of GPS signals, Radio Sci. 2013, vol. 48, iss. 6, pp. 698-708.

17. Khakhinov V.V., Potekhin A.P., Lebedev V.P., Alsatkin S.S., Ratovsky K.G, Kushnarev D.S., Tverdokhlebova E.M., Kurshakov M.Yu., Manzheley A.I., Timofeeva N.I. Results of remote sounding of ionospheric disturbances during active experiments Radar-Progress. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of Earth from space]. 2012, vol. 9, no. 3, pp. 199-206. (In Russian).

18. Khakhinov V.V., Potekhin A.P., Lebedev V.P., Medvedev A.V., Kushnarev D.S., Shpynev B.G., Zarudnev V.E., Alsatkin S.S., Ratovsky K.G, Podlesny A.V., Bryn'ko I.G. Radio physical methods of diagnostics of the ionospheric disturbances generated by onboard engines of TCS Progress: algorithms, tools and results. Zhurnal radioelektroniki. Rossiiskaya nauchnaya konferentsiya “Zondirovanie zemnykh pokrovov radarami s sintezirovannoi aperturoi”. Ulan-Ude, 06.09-10.09.2010. [J. Radio Electronics. Proc. the Russian Scientific Conference “Sounding of Terrestrial Covers Using Radars with the Synthesized Aperture. Ulan-Ude, 06.09-10.09.2010]. 2010, p. 553-569. (In Russian).

19. Khakhinov V., Potekhin A., Shpynev B., Alsatkin S., Ratovsky K., Lebedev V., Kushnarev D. Results of complex radio sounding of ionospheric disturbances generated by the transport spacecraft Progress onboard thrusters. Proc. 30th URSI General Assembly and Scientific Symposium. 2011. Available at: http://www.ursi.org/proceedings/procGA11/ursi/ HP2-15.pdf (accessed 12 May 2017).

20. Khakhinov V.V., Potekhin A.P., Lebedev V.P., Kushnarev D.S., Alsatkin S.S. Some results of Plasma-Progress and Radar-Progress active space experiments. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akade-mika M.F. Reshetneva [Bull. M.F. Reshetnev Siberian State Space University]. 2013, special iss., vol. 5, no. 51, pp. 160-162. (In Russian).

21. Khakhinov V.V., Shpynev B.G., Lebedev V.P., Kushnarev D.S., Alsatkin S.S., Khabituev D.S. Radio sounding of ionospheric disturbances generated by exhaust streams of the transport spacecraft Progress engines. Proc. PIERS-2012. Moscow, 2012, pp. 1168-1171.

22. Klunko E.V., Eselevich M.V., Tergoev V.I. Progress cargo spacecraft observed with the AZT-33IK optical telescope. Solar-Terr. Phys. 2016, vol. 2, no. 3, pp. 22-31.

23. Kunitsyn V.E., Nesterov I.A., Shalimov S.L. Japan mega-thrust earthquake on March 11, 2011: GPS-TEC evidence for ionospheric disturbances. J. Experimental and Theoretical Phys. Lett. (JETP Lett.). 2011, vol. 94, no. 8, pp. 616-620.

24. Lebedev V.P., Khakhinov V.V., Kushnarev D.S., Podlesny A.V., Garkusha V.I. Radiophysical effects of spacecraft engine burn. Trudy XXIV vserossiiskoi konferentsii po rasprostraneniju radiovoln [Proc. 24th National Conference “Propagation of Radio Waves”. Irkutsk. June 29 - July 5 2014]. 2014, vol. 1, pp. 60-66. (In Russian).

25. Lejeune S, Wautelet G, Warnant R Ionospheric effects on relative positioning within a dense GPS network. GPS Solutions. 2012, vol. 16, no. 1, pp. 105-116.

26. Lipko Yu.V., Pashinin A.Yu., Rakhmatulin R.A., Khakhinov V.V. Geomagnetic effects caused by rocket exhaust jets. Solar-Terr. Phys. 2016, vol. 2, no. 3, pp. 43-55.

27. Liu J.Y., Lin C.H. Ionospheric solar flare effects monitored by the ground based GPS receivers: theory and observation. J. Geophys. Res. 2004, vol. 109, A01307.

28. Perevalov A.A., Perevalova N.P. The control and data acquisition with dual-frequency GNSS receiver Javad Delta via interfaces USB and RS-232 in interactive and batch modes in the Linux operating system. Certificate of State Registration of Program for Computer № 2016613942. 12.04.2016. (In Russian).

29. Perevalova N.P., Afraimovich E.L., Voeykov S.V., Zhivetiev I.V. Parameters of large scale TEC disturbances during strong magnetic storm on October 29, 2003. J. Geophys. Res. 2008, vol. 113, A00A13. DOI:https://doi.org/10.1029/2008JA013137.

30. Perevalova N.P., Voeykov S.V., Yasyukevich Yu.V., Ishin A.B., Voeykova E.S., Sankov V.A. Investigation into ionospheric disturbances caused by the earthquake of 11 March 2011 in Japan, using GEONET data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of Earth from space]. 2012, vol. 9, no. 3, pp. 172-180. (In Russian).

31. Prikryl P., Jayachandran P.T., Mushini S.C., Pokhotelov D., MacDougall J.W., Donovan E., Spanswick E., St.-Maurice J.-P. GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Ann. Geophys. 2010, vol. 28, pp. 1307-1316.

32. Seismoionosfernye i seismoelektromagnitnye protsessy v Bajkal'skoi riftovoi zone. Ed. Zherebtsov G.A. [Seismoionospheric and Seismoelectromagnetic Processes in the Baikal Rift Zone. Ed. Zherebzov G.A.]. Novosibirsk, SB RAS Publ., 2012. 304 p. (In Russian).

33. Shimeis A., Borries C., Amory-Mazaudier C., Fleury R., Mahrous A.M., Hassan A.F., Nawar S. TEC variations along an East Euro-African chain during 5th April 2010 geomagnetic storm. Adv. Space Res. 2015, no. 55, pp. 2239-2247.

34. Shpynev B.G., Alsatkin S.S., Khakhinov V.V., Lebedev V.P. Investigating the ionosphere response to exhaust products of Progress cargo spacecraft engines on the basis of Irkutsk incoherent scatter radar data. Solar-Terr. Phys. 2017, vol. 3, no. 1, pp. 114-127.

35. Spogli L., Alfonsi L., Cilliers P.J., Correia E., Franceschi G., Mitchell C.N., Romano V., Kinrade J., Cabrera M. A. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions. Annals of Geophys. 2013, vol. 56, no. 2, R0220.

36. Tsugawa T., Saito A., Otsuka Y., Nishioka M., Maruyama T., Kato H., Nagatsuma T., Murata K.T. Ionospheric disturbances detected by GPS total electron content observation after the 2011 Tohoku Earthquake. Earth, Planets and Space. 2011, vol. 63, no. 7, pp. 875-879.

37. Yasyukevich Y.V., Voeikov S.V., Zakharov V.I., Kunitsyn V.E. The response of the ionosphere to the earthquake in Japan on March 11, 2011 as estimated by different GPS-based methods. Geomagnetism and Aeronomy. 2015, vol. 55, no 1, pp. 108-117.

38. Zakharov V.I., Yasyukevich Y.V., Titova M.A. Effect of magnetic storms and substorms on GPS slips at high latitudes. Cosmic Res. 2016, vol. 54, no 1, pp. 20-30.

39. Zherebtsov G.A., Perevalova N.P. Ionospheric response to a rocket launch from the Vostochnyi Cosmodrome. Doklady akademii nauk. Nauki o Zemle [Doklady Earth Sciences]. 2016, vol. 471, part 2, pp. 1280-1283

Login or Create
* Forgot password?