RESULTS OF THE STUDY OF THE PATHOPHYSIOLOGICAL EFFECTS OF DYSREGULATION OF FREE-RADICAL PROCESSES: DEADLOCK OR A NEW IMPULSE?
Rubrics: REVIEW
Abstract and keywords
Abstract (English):
V obzore privodyatsya rezul'taty mnogoletnih rabot avtorov i dannye zarubezhnyh issledovaniy, svidetel'stvuyuschie o vazhnoy roli svobodnoradikal'nyh processov v etiologii i patogeneze ateroskleroza. Vyskazana gipoteza o tom, chto suschestvuet edinyy molekulyarnyy mehanizm pervichnyh predaterogennyh povrezhdeniy stenki sosudov pri ateroskleroze i diabete, kotoryy sostoit v usilennom obrazovanii karbonil-modificirovannyh lipoproteidov nizkoy plotnosti, nakaplivayuschihsya v penistyh kletkah.

Keywords:
svobodnye radikaly, modificirovannye lipoproteidy nizkoy plotnosti, okislitel'nyy stress, karbonil'nyy stress, ateroskleroz, saharnyy diabet
Text
Text (PDF): Read Download
References

1. Deev AI, Osis YG, Formazyuk VE, Vladimirov YA, Lankin VZ (1983). Increase of the water content in the lipid phase of lipoproteins during peroxidation [Uvelichenie soderzhaniya vody v lipidnoy faze lipoproteidov pri perekisnom okislenii]. Biofizika, 28 (4), 629-631.

2. Lankin VZ (1981). Metabolism of lipoperoxides in animal tissues [Metabolizm lipoperekisey v tkanyakh mlekopitayushchikh]. Biokhimiya lipidov i ikh rol’ v obmene veshchestv, 75-95.

3. Lankin VZ, Tikhaze AK, Belenkov YN (2004). Antioxidants in complex therapy of atherosclerosis: pro et contra [Antioksidanty v kompleksnoy terapii ateroskleroza: za i protiv]. Kardiologiya, 44 (2), 72-81.

4. Lankin VZ, Tikhaze AK, Osis YG, Vikhert AM, Sheve T, Rapoport S (1985). Enzymatic regulation of lipid peroxidation in biomembranes: the role of phospholipase A2 and glutathione-S-transferase [Fermentativnaya regulyatsiya perekisnogo okisleniya lipidov v biomembranakh: rol’ fosfolipazy A2 i glutationtransferazy]. Doklady Akademii nauk SSSR, 28 (1), 204-207.

5. Lankin VZ, Tikhaze AK, Osis YG (2002). Modeling the cascade of enzymatic reactions in.liposomes including successive free-radical peroxidation, reduction and hydrolysis of phospholipid polyenoic acyls for studying the effect of these processes on the structural-dynamic parameters of the membranes [Modelirovanie kaskada fermentnykh reaktsiy v liposomakh, vklyuchayushchikh posledovatel’noe svobodnoradikal’noe okislenie, vosstanovlenie i gidroliz polienovykh atsilov fosfolipidov dlya issledovaniya vliyaniya etikh protsessov na strukturno-dinamicheskie parametry membrany]. Biokhimiya, 67 (5), 679-689.

6. Osis YG, Lankin VZ, Vikhert AM (1984). Animal lipoxygenases as an instrument for the peroxidation of membrane phospholipids [Lipoksigenazy zhivotnykh kak instrument dlya peroksidatsii fosfolipidov membran]. Doklady Akademii nauk SSSR, 276 (4), 989-992.

7. Shumaev KB, Gubkina SA, Kumskova EM, Shepelkova GS, Ruuge EK, Lankin VZ (2009). Superoxide formation as a result of interaction of L-lysine with dicarbonyl [Mekhanizm obrazovaniya superoksidnogo radikala pri vzaimodeystvii L-lizina s dikarbonil’nymi soedineniyami]. Biokhimiya, 74 (4), 461-466.

8. Emanuel NM, Lipchina LP (1958). Leukemia in mice, and especially its development under the influence of inhibitors of chain oxidation processes [Leykoz u myshey i osobennosti ego razvitiya pri vozdeystvii ingibitorov tsepnykh okislitel’nykh protsessov]. Doklady Akademii nauk SSSR, 121 (1), 141-144.

9. Apostolov EO, Basnakian AG, Yin X, Ok E, Shah SV (2007). Modified LDLs induce proliferation-mediated death of human vascular endothelial cells through MAPK pathway. Am. J. Physiol. Heart. Circ. Physiol., 292 (4), 1836-1846.

10. Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS (1999). Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes, 48 (1), 198-202.

11. Belkheiri N, Bouguerne B, Bedos-Belval F, Duran H, Bernis C, Salvayre R, Nègre-Salvayre A, Baltas M. (2010). Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur. J. Med. Chem., 45 (7), 3019-3026.

12. Belkner J, Stender H, Kühn H (1997). 15-Lipoxygenase preferentially oxygenates a subfraction of human low density lipoprotein. Adv. Exp. Med. Biol., 407, 465-469.

13. Belkner J, Wiesner R, Kühn H, Lankin VZ (1991). The oxygenation of cholesterol esters by the reticulocyte lipoxygenase. FEBS Lett., 279 (1), 110-114.

14. Bernheim F (1963). Biochemical implications of pro-oxidants and antioxidants. Radiation Res., 3 (Suppl.), 17-32.

15. Boullier A, Li Y, Quehenberger O, Palinski W, Tabas I, Witztum JL, Miller YI (2006). Minimally oxidized LDL offsets the apoptotic effects of extensively oxidized LDL and free cholesterol in macrophages. Arterioscler. Thromb. Vasc. Biol., 26 (5), 1169-1176.

16. Brown M, Goldstein J (1990). Atherosclerosis scavenging for receptors. Nature, 343 (6258), 508-509.

17. Сhristophersen BO (1968). Formation of monohydroxy-polyenic fatty acids from lipid peroxides by glutathione peroxidase. Biochim. Biophys. Acta, 164 (1), 35-46.

18. Fogelman AM, Shechtrer I, Seager J, Hokom M, Child JS, Edvards PA (1980). Malondialdehyde alteration of low density lipoproteins leads to the cholesteryl ester accumulation in human monocyte macrophages. Proc. Natl. Acad. Sci. USA, 77 (4), 2214-2218.

19. Fridovich I (1978). The biology of oxygen radicals. Science, 201 (4359), 875-903.

20. Galvani S, Coatrieux C, Elbaz M, Grazide MH, Thiers JC, Parini A, Uchida K, Kamar N, Rostaing L, Baltas M, Salvayre R, Nègre-Salvayre A (2008). Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives. Free Radic. Biol. Med., 45 (10), 1457-1467.

21. Glavind J, Hartmann S, Clemmensen J, Jessen KE, Dam H (1952). Studies on the role of lipid peroxides in human pathology. Acta Pathol. Microbiol. Scand., 30 (1), 1-6.

22. Harman D (1956). Aging: а theory based on free radical and radiation chemistry. J. Gerontol, 11 (3), 298-300.

23. Laakso M (2010). Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care, 33 (2), 442-449.

24. Lankin V (1992). Atherosclerosis as free radical pathology. Excerpta Med., Int. Congr. Ser., (G98), 385-388.

25. Lankin VZ (2003). The enzymatic systems in the regulation of free radical lipid peroxidation. In: Tomasi A. et al. (eds.) Free Radicals, Nitric Oxide, and Inflammation: Molecular, Biochemical, and Clinical Aspects., (344), 8-23.

26. Lankin V, Konovalova G, Tikhaze A, Shumaev K, Kumskova E, Viigimaa M (2014). The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Mol. Cell. Biochem., 395 (1-2), 241-252.

27. Lankin VZ, Konovalova GG, Tikhaze AK, Shumaev KB, Belova-Kumskova EM, Grechnikova MA, Viigimaa M (2015). Aldehyde inhibition of antioxidant enzymes in blood of diabetic patients. J. Diabetes, doi:https://doi.org/10.1111/1753-0407.12309 [Epub ahead of print].

28. Lankin VZ, Kühn H, Hiebsch C, Schewe T, Rapoport S, Tikhaze AK, Gordeeva NT (1985). On the nature of the stimulation of the lipoxygenase from rabbit reticulocytes by biological membranes. Biomed. Biocim. Acta, 44 (5), 655-664.

29. Lankin VZ, Tikhaze AK (2003). Free radical lipoperoxidation during atherosclerosis and antioxidative therapy of this disease. In: Tomasi A. et al. (eds.). Free Radicals, Nitric Oxide and Inflammation: Molecular, Biochemical and Clinical Aspects., (344), 218-231.

30. Lankin VZ, Tikhaze AK, Konovalova GG, Kumskova EM, Shumaev KB (2010). Aldehyde-dependent modification of low density lipoproteins. In: Handbook of Lipoprotein Research, 85-107.

31. Lankin VZ, Tikhaze AK, Kumskova EM (2012). Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein. Mol. Cell. Biochem., 365 (1-2), 93-98.

32. Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, Basso E, Seraglia R, Traldi P (2003). Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin. Chem. Lab. Med., 41 (9), 1166-1173.

33. Li D, Saldeen T, Romeo F, Mehta JL (2000). Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-kappaB. Circulation, 102 (16), 1970-1976.

34. Niedowicz DM, Daleke DL (2005). The role of oxidative stress in diabetic complications. Cell Biochem. Biophys., 43 (2), 289-330.

35. Oberley LW (1988). Free radicals and diabetes. Free Radic. Biol. Med., 5 (2), 113-124.

36. Rhee SG, Kang SW, Netto LE, Seo MS, Stadtman ER (1999). A family of novel peroxidases, peroxiredoxins. Biofactors, 10 (2-3), 207-209.

37. Shen XC, Tao L, Li WK, Zhang YY, Luo H, Xia YY (2012). Evidence-based antioxidant activity of the essential oil from Fructus A. zerumbet on cultured human umbilical vein endothelial cells’ injury induced by ox-LDL. BMC Complement. Altern. Med., doi:https://doi.org/10.1186/1472-6882-12-174.

38. Spiteller G. (2008). Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation end products. Ann. NY Acad. Sci., (1126), 128-133.

39. Steinberg D, Witztum JL (2010). Oxidized low-density lipoprotein and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 30 (12), 2311-2316.

40. Takei A, Huang Y, Lopes-Virella MF (2001). Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis, 154 (1), 79-86.

41. Tikhaze AK, Lankin VZ (2001). Exogenous oxysterols as an atherogenic factor. J. Mol. Cell. Cardiol., (33), A123.

42. Viigimaa M, Abina J, Zemtsovskaya G, Tikhaze A, Konovalova G, Kumskova E, Lankin V (2010). Malondialdehyde-modified low-density lipoproteins as biomarker for atherosclerosis. Blood Press., 19 (3), 164-168.

43. Woodford FP, Bottcher CJ, Oette K, Anrens EH (1965). The artificial nature of lipid peroxides detected in extracts of human aorta. J. Atheroscer. Res., 5 (3), 311-316.

Login or Create
* Forgot password?