SUCCINATE CONTAINING DRUG FOR CORRECTION OF LIPID PEROXIDATION PROCESSES INDUCED BY ADMINISTRATION OF THE CARBON TETRACHLORIDE
Abstract and keywords
Abstract (English):
At present in the clinical practice compounds of succinic acid which have antioxidant and cytoprotective properties are used as pharmacologically active substances with a wide range of biological activity. In experimental conditions the possibility to correct free radical lipid oxidation of rats’ organism membranes was studied with the administration of the succinate containing drug called Remaxol® (Polysan, St. Petersburg). The animals were divided into 4 groups and each of them had 20 rats: the group with intact animals which were held in standard conditions of vivarium; the control group in which rats were given carbon tetrachloride during 3 days daily; the experimental group in which before the introduction of carbon tetrachloride animals had a daily intra-abdominal intake of Remaxol in a dose of 50 mg/kg; the experimental group in which before the introduction of carbon tetrachloride animals had a daily intra-abdominal intake of the Remaxol in a dose of 100 mg/kg. It was found out that in the blood of experimental animals the administration of carbon tetrachloride during 3 days contributes to the increase of lipid hydroperoxides level (by 20-24%), of diene conjugate (by 17-19%), and of malonic dialdehyde (by 51-59%) against the decrease of antioxidant system activity in the blood of intact animals. The administration of the succinate containing drug to rats in the conditions of oxidative stress contributes to decrease in the blood of lipid hydroperoxides by 7-12%, of diene conjugates by 7-11%, and of malonic dialdehyde by 13-24% in comparison with the rats of the control group. While analyzing the effect of the succinate containing drug on the activity of the components of antioxidant system it was shown that the level of ceruloplasmin in the blood of animals was significantly higher by 9-24%, of vitamin E by 12-21%, of catalase by 13-24% in comparison with the same parameters of the rats of the control group. So, the application of the succinate containing drug called Remaxol in the conditions of administration of carbon tetrachloride into the organism of animals under experiment leads to the stabilization of the processes of peroxidation against the increase of antioxidant system activity.

Keywords:
succinate containing drug, Remaxol, carbon tetrachloride, biological membranes lipid peroxidation, products of peroxidation (lipid hydroperoxides, diene conjugates, malonic dialdehyde), antioxidant system.
Text

В связи с особенностями молекулярных механизмов действия тетрахлорметана на субклеточные мембраны, изучение биологического действия гепатотропного яда представляет интерес как модель молекулярной патологии мембранных структур [5]. Четыреххлористый углерод вызывает дозозависимое поражение печени, помимо этого оказывая токсическое влияние на форменные элементы крови, соединительную ткань, морфофункциональное состояние ряда органов и систем.

Согласно современным представлениям, значительную роль в развитии патологии при токсическом поражении печени играют свободнорадикальные реакции [8, 9]. Активные формы кислорода вызывают усиленную пероксидацию липидов клеточных мембран, способствуя нарушению равновесия между про- и антиоксидантной системами с последующим формированием окислительного стресса в теплокровном организме, при котором патогенетически обоснованным является назначение лекарственных препаратов, обладающих антиоксидантным и мембранопротекторным действием [1]. Данные свойства выявлены у препаратов, содержащих янтарную кислоту и обладающих широким спектром фармакологической активности [2, 4].

В основе большинства внутриклеточных патологических процессов лежит митохондриальная дисфункция, оптимальная коррекция которой возможна введением экзогенного сукцината, способствующего нормализации аэробного окисления в митохондриях, устраняющего разобщение окислительного фосфорилирования и угнетение микросомальных процессов [3]. Согласно современным представлениям о патогенетической метаболической терапии окислительного стресса, кроме янтарной кислоты в состав комбинированных средств целесообразно включать предшественники макроэргов, незаменимые аминокислоты и соединения, корригирующие окислительно-восстановительные процессы. В полной мере этим требованиям отвечает лекарственный препарат Ремаксол® (НТФФ «Полисан», Санкт-Петербург). Ремаксол, в состав которого входят такие активные компоненты как янтарная кислота, рибоксин, никотинамид, метионин, а также электролиты (натрия, магния и калия хлорид) и сольстабилизирующий агент N-метилглюкамин, обладает дезинтоксикационным, антиоксидантным и антигипоксантным действием [6]. В связи с вышеизложенным представляет интерес исследование эффективности ремаксола в коррекции процессов перекисного окисления липидов (ПОЛ) биомембран в условиях токсического повреждения печени тетрахлорметаном.

Цель исследования – изучение влияния ремаксола на интенсивность процессов липопероксидации, индуцированных введением четыреххлористого углерода.

 

Материалы и методы исследования

 

Работа выполнена на кафедре госпитальной терапии с курсом фармакологии Амурской государственной медицинской академии. Эксперимент проводили на 80 белых беспородных крысах-самцах массой 180-220 г в течение 14 дней, поскольку проведенными нами ранее исследованиями была показана наиболее выраженная антиоксидантная активность у сукцинатсодержащего препарата Ремаксол к концу второй недели опыта [2].

Протокол экспериментальной части исследования на этапах содержания животных, моделирования патологических процессов и выведения их из опыта соответствовал принципам биологической этики, изложенным в Международных рекомендациях по проведению медико-биологических исследований с использованием животных (1985), Европейской конвенции о защите позвоночных животных, используемых для экспериментов или в иных научных целях (Страсбург, 1986), Приказе МЗ СССР №755 от 12.08.1977 «О мерах по дальнейшему совершенствованию организационных форм работы с использованием экспериментальных животных», Приказе МЗ РФ №267 от 19.06.2003 «Об утверждении правил лабораторной практики».

При завершении научных исследований выведение животных из опыта проводили путем декапитации с соблюдением требований гуманности согласно приложению №4 к Правилам проведения работ с использованием экспериментальных животных − приложение к приказу МЗ СССР №755 от 12.08.1977 «О порядке проведения эвтаназии (умерщвления животного)». Исследование одобрено Этическим комитетом Амурской государственной медицинской академии.

Животные были разделены на 4 группы, в каждой по 20 крыс: 1 группа – интактные крысы, которые содержались в стандартных условиях вивария; 2 группа – контрольная, в которой животным в течение трех дней ежедневно подкожно вводили 50% масляный раствор четыреххлористого углерода в дозе 2 г/кг; 3 и 4 группы – подопытные, где животным перед подкожным введением 50% масляного раствора четыреххлористого углерода в дозе 2 г/кг (введение тетрахлорметана осуществляли в течение трех дней) ежедневно в течение 14 дней внутрибрюшинно вводили, соответственно, ремаксол в дозе 50 мг/кг и 100 мг/кг по сукцинату. Забой животных путем декапитации производили на 7 и 14 сутки. Интенсивность процессов ПОЛ оценивали, исследуя содержание в крови животных гидроперекисей липидов (ГП), диеновых конъюгатов (ДК), малонового диальдегида (МДА) и компонентов АОС – церулоплазмина, витамина Е, каталазы по методикам, изложенным в ранее опубликованных нами работах [7, 10]. Статистическую обработку результатов проводили с использованием критерия Стъюдента (t) с помощью программы Statistica v.6.0. Результаты считали достоверными при р<0,05.

 

Результаты исследования и их обсуждение

 

Отравление четыреххлористым углеродом является классической моделью перекисного повреждения, что было подтверждено результатами проведенных исследований (табл. 1). Введение тетрахлорметана крысам сопровождается активацией процессов ПОЛ и накоплением продуктов пероксидации в крови контрольных животных: увеличением содержания ГП – на 24% (7 день) и 20% (14 день эксперимента) в сравнении с аналогичным показателем в группе интактных крыс; ДК – на 19% (7 день) и 17% (14 день эксперимента); МДА – на 59% (7 день) и 51% (14 день эксперимента), что связано с образованием свободных радикалов из CCl4. Образующийся при метаболизме ксенобиотика в системе цитохрома Р-450 трихлорметильный радикал, в свою очередь, реагирует с кислородом с образованием еще более токсичного трихлорметилпероксильного радикала. Таким образом, CCl4 подвергается биотрансформации, приводящей к образованию реактивных продуктов в ходе первой фазы метаболизма ксенобиотика, в последующем продукты первой фазы поступают в общий кровоток, оказывая действие на органы и системы.

В свою очередь, введение сукцинатсодержащего препарата Ремаксол на фоне применения тетрахлорметана сопровождалось достоверным снижением содержания продуктов радикального характера в сравнении с показателями в контрольной группе. На фоне применения ремаксола в дозе 50 мг/кг концентрация ГП уменьшилась на 2% (7 день, 14 день эксперимента); ДК – на 4% (7 день, 14 день эксперимента); МДА –  на 13% (7 день) и 24% (14 день эксперимента). На фоне введения ремаксола в дозе 100 мг/кг содержание ГП снизилось на 7% (7 день) и 12% (14 день эксперимента); ДК – на 7% (7 день) и 11% (14 день эксперимента); МДА – на 19% (7 день) и 23% (14 день эксперимента). Указанные изменения согласуются с результатами исследований, опубликованными нами ранее, которыми был показан антиоксидантный эффект сукцинатсодержащего препарата Ремаксол в условиях холодовой экспериментальной модели [2].

Таблица 1

Содержание продуктов ПОЛ в крови экспериментальных животных (М±m)

 

Показатели, нмоль/мл

Сроки эксперимента

Интактные крысы

Введение CCl4

Введение CCl4 и ремаксола в дозе 50 мг/кг

Введение CCl4 и ремаксола в дозе 100 мг/кг

ГП

7 день

27,3±0,74

33,8±1,31*

33,4±0,86

31,6±0,75

14 день

28,4±0,69

34,2±1,18*

33,7±1,13

29,8±1,00**

ДК

7 день

35,7±1,10

42,5±1,42*

41,0±1,00

39,5±1,25

14 день

36,5±1,31

42,8±0,92*

41,1±0,58

38,0±1,42**

МДА

7 день

3,9±0,12

6,2±0,28*

5,4±0,27

5,0±0,32**

14 день

4,1±0,21

6,2±0,24*

4,7±0,22**

4,8±0,28**

 

Примечание: здесь и далее * – достоверность различия показателей по сравнению с группой интактных животных (р<0,05); ** – достоверность различия показателей по сравнению с группой животных, которым вводили тетрахлорметан (р<0,05).

 

Таблица 2

Содержание компонентов АОС в крови экспериментальных животных (М±m)

 

Показатели, нмоль/мл

Сроки эксперимента

Интактные крысы

Введение CCl4

Введение CCl4 и ремаксола в дозе 50 мг/кг

Введение CCl4 и ремаксола в дозе 100 мг/кг

Церулоплазмин, мкг/мл

7 день

25,4±0,57

20,0±0,58*

21,8±0,70

24,6±0,75**

14 день

25,5±0,77

20,2±0,79*

22,7±0,32**

25,0±0,66**

Витамин Е,

мкг/мл

7 день

45,4±0,82

37,2±1,25*

41,8±1,80

42,4±1,35**

14 день

45,8±0,99

36,5±0,87*

42,5±0,92**

44,0±1,12**

Каталаза,

мкмоль Н2О2 г-1с-1

7 день

127±2,94

107±4,15*

121±1,93**

125±4,25**

14 день

126±2,84

102±5,12*

125±3,79**

126±4,60**

Активация процессов ПОЛ при введении четыреххлористого углерода сопровождается напряжением АОС (табл. 2): содержание церулоплазмина в крови контрольных крыс в сравнении с интактными животными снизилось на 21% (7 день, 14 день эксперимента); витамина Е – на 18% (7 день) и 20% (14 день эксперимента); каталазы – на 16% (7 день) и 19% (14 день эксперимента), что согласуется с проведенными нами ранее исследованиями [9] и вполне логично, поскольку при индукции биосинтеза продуктов пероксидации в условиях отравления тетрахлометаном напряжение функционирования звеньев антиоксидантной защиты организма приводит к постепенному истощению компонентов АОС. Использование сукцинатсодержащего препарата для коррекции окислительного стресса, индуцированного введением четыреххлористого углерода, способствовало повышению активности АОС в крови подопытных животных: на фоне введения ремаксола в дозе 50 мг/кг содержание церулоплазмина выросло на 9% (7 день) и 12% (14 день эксперимента) по сравнению с аналогичным показателем в группе контрольных крыс; на фоне введения ремаксола в дозе 100 мг/кг – на 23% и 24%, соответственно. Уровень витамина Е при использовании ремаксола в дозе 50 мг/кг увеличился на 12% (7 день) и 16% (14 день), при использовании ремаксола в дозе 100 мг/кг – на 14% и 21% относительно контрольных животных. В свою очередь, исследование активности каталазы в условиях коррекции введением препарата, содержащего янтарную кислоту, позволило констатировать повышение активности данного фермента в среднем  на 13-24%.

Таким образом, результаты проведенных исследований подтверждают антиоксидантную активность ремаксола, вводимого внутрибрюшинно в дозах 50 мг/кг и 100 мг/кг по сукцинату, при отравлении подопытных животных тетрахлорметаном, причем в очередной раз экспериментально была показана прямая дозозависимость сукцинатсодержащего препарата, отражающая более выраженный антиокислительный эффект при использовании лекарственного средства в дозе 100 мг/кг. Янтарная кислота в составе комбинированного препарата способствует активации сукцинатдегидрогеназного окисления, восстановлению активности ключевого фермента дыхательной цепи – цитохромоксидазы, что позволяет обеспечить энергокоррекцию, активизировать защитные механизмы, повышающие резистентность к окислительному стрессу за счет активации собственных антиоксидантных систем. Антиоксидантный эффект янтарной кислоты в рецептуре препарата дополняется метионином, который превращается в организме в адеметионин под влиянием метионинаденозилтрансферазы. Адеметионин участвует в биологических реакциях трансметилирования, обеспечивающих текучесть и поляризацию мембран за счет увеличения содержания фосфолипидов, и в реакциях транссульфатирования, восстанавливающих уровень эндогенного глутатиона. Введение  никотинамида активирует антиоксидантные системы убихиноновых оксидоредуктаз, защищающие мембраны клеток от разрушения активными радикалами. Антиоксидантное действие рибоксина реализуется за счёт активации синтеза никотинамидадениндинуклеотида в митохондриях из никотинамида, где рибоксин выступает в качестве донора рибозы, стимуляции анаэробного гликолиза с образованием лактата и никотинамидадениндинуклеотида, ингибирования фермента ксантиноксидазы и подавления радикальных процессов.

В целом, экспериментально подтверждена и обоснована возможность коррекции процессов липопероксидации, индуцированных применением четыреххлористого углерода, введением сукцинатсодержащего препарата Ремаксол.

 

Выводы

 

  1. Введение четыреххлористого углерода лабораторным животным индуцирует формирование синдрома липопероксидации в условиях накопления продуктов ПОЛ и снижения уровня основных компонентов АОС в крови крыс.
  2. Использование в эксперименте сукцинатсодержащего препарата Ремаксол в дозах 50 мг/кг и 100 мг/кг по сукцинату снижает интенсивность процессов ПОЛ биомембран в условиях отравления животных тетрахлорметаном, что подтверждается уменьшением содержания продуктов пероксидации на фоне достоверного увеличения активности основных компонентов АОС.
References

1. Dorovskikh V.A., Simonova N.V., Simonova I.V., Shtarberg M.A. Adaptogens of vegetable origin in prophylaxis of respiratory diseases in children of young age. Dal'nevostochnyy meditsinskiy zhurnal 2011; 1:41-44 (in Russian).

2. Dorovskikh V.A., Simonova N.V., Li O.N., Dorovskikh V.Yu., Shtarberg M.A., Landyshev S.Yu., Mishuk V.P., Savinova T.A. Effect of succinate containing drugs on the intensity of peroxidation in the conditions of cold exposure. Bûlleten' fiziologii i patologii dyhaniâ 2013; 50:56-60 (in Russian).

3. Dorovskikh V.A., Simonova N.V., Dorovskikh Yu.V., Li O.N. Correction of cold effect by means of the drug with succinic acid. Bûlleten' fiziologii i patologii dyhaniâ 2013; 49:82-86 (in Russian).

4. Dorovskikh V.A., Tseluyko S.S., Simonova N.V., Anokhina R.A. In the world of antioxidants. Blagoveshchensk: AGMA; 2012 (in Russian).

5. Kushnerova N.F., Fedoreev S.A., Fomenko S.E., Sprygin V.G., Kulesh N.I., Mishenko N.P., Veselova M.V., Momot T.V. Hepatoprotective properties of isoflavonoids from roots of Maackia amurensis on experimental carbon tetrachloride-induced hepatic damage. Eksp. Klin. Farmakol. 2014; 77(2):26-30 (in Russian).

6. Pavelkina V.F., Ampleeva N.P. Comparative effectiveness hepatotropic activity remaxol and Essentiale N in chronic viral hepatitis. Eksp. Klin. Farmakol. 2014; 77(12):17-21 (in Russian).

7. Simonova N.V., Dorovskikh V.A., Shtarberg M.A. Effect of the tincture made of nettle, birch and plantain leaves on the intensity of peroxidation at ultraviolet radiation. Bûlleten' fiziologii i patologii dyhaniâ 2012; 44:90-94 (in Russian).

8. Simonova N.V., Dorovskikh V.A., Shtarberg M.A. The influence of vegetal adaptogens on the intensity of lipid peroxidation processes of biomembranes during ultraviolet irradiation. Dal'nevostochnyy meditsinskiy zhurnal 2010; 2:112-115 (in Russian).

9. Simonova N.V., Dorovskikh V.A., Simonova N.P. Ultraviolet radiation and oxidative stress. The possibility of phitocorrection. Blagoveshchensk: Dal'GAU; 2014 (in Russian).

10. Simonova N.V., Dorovskikh V.A., Li O.N., Shtarberg M.A., Simonova N.P. Tincture of medicinal plants and oxidative stress in the conditions of cold influence. Bûlleten' fiziologii i patologii dyhaniâ 2013; 48:76-80 (in Russian).

Login or Create
* Forgot password?