CALCULATION OF TOXIC SUBSTANCE BURNING WITH FORMATION OF COMBUSTION PRODUCTS’ VERTICAL SUPERSONIC STREAM
Abstract and keywords
Abstract (English):
A system for burning of a destroyed highly toxic substance with formation of a vertical supersonic stream of combustion products moved away to the atmosphere on considerable heights has been considered. A technique and an algorithm for conjugated gas-dynamic and thermodynamic calculation of working processes in two-zonal unit with primary burning using air in a camera similar to the one of a liquid rocket engine, and after-burning in a supersonic flow have been proposed. The technique has been approved on the examples of after-burning mathematical modeling and a parametrical research on combustion completeness influence on composition and properties of products resulting from heptyl combustion in air with after-burning in case of methane supply in the second zone.

Keywords:
firing thermal destruction method, two-zone burning, chamber of liquid rocket engine, after-burning in supersonic flow, gas-dynamical calculation, air, heptyl.
Text
Publication text (PDF): Read Download

1. Введение в проблему

Один из методов обезвреживания токсичных веществ, в частности ракетного топлива и его компонентов, а также технологических жидкостей, например использованного в качестве промывочной среды этанола, метанола или других жидких производственных отходов, состоит в их уничтожении сжиганием и удалением в атмосферу продуктов сгорания с остаточным содержанием токсичных веществ. При этом продукты сгорания выбрасываются в вертикальной струе на некоторую высоту, увеличение которой обеспечивает более интенсивное снижение их концентрации до допустимого уровня за счет смешения с воздухом. Это может быть обеспечено при инерционном подъеме струи отходящих газов за счет ее ускорения до очень высокой и даже сверхзвуковой скорости.

References

1. Bernadiner M. N., Shurygin A. P. Ognevaya pererabotka i obezvrezhivanie promyshlennykh otkhodov [Fire recycling and disposal of industrial waste]. Moscow, Khimiya Publ., 1990 (in Russian).

2. Pechi dozhiga (paroszhigateli) [incinerator (fat burners)]. Available at: http://www.generation-nho.ru (accessed 15 July 2016) (in Russian).

3. Kolbanovskiy Yu.A., Belyy V. V., Grigor’ev A.S., Dulatov R. D., Rossikhin I. V., Shchipachev V. S., Plate N. A. Sposob unichtozheniya supertoksichnykh soedineniy: pat. 2072477 Ros. Federatsiya: MPK F23G5/00 Szhiganie otkhodov; konstruktsii musoroszhi-gatel’nykh pechey; detali, prinadlezhnosti pechey; upravlenie pechami, F23G7/00 Pechi ili drugie ustroystva, spetsial’no prednaznachennye dlya unichtozheniya spetsificheskikh otkhodov ili nizkokachestvennogo topliva, naprimer khimikatov [The method of destruction supertoxic compounds: US Pat. 2072477 Russian Federation: IPC F23G5 / 00 Incineration of waste; design musoroszhigatelnyh furnaces; parts, stoves accessories; stoves management, F23G7 / 00 Stoves or other apparatus specially adapted for the destruction of specific waste or low grade fuels, eg chemicals]. Patentoobladatel’ Institut neftekhimicheskogo sinteza im. A. V. Topchieva RAN [patentee Institute of Petrochemical Synthesis. Topchiev RAS] (in Russian).

4. Trusov B. G. Program system TERRA vor simulation phase and chemical equilibrium// Proc. of the XIV Intern. Symp. on Chemical Thermodynamics, St-Petersburg, Russia, 2002. - P. 483-484.5. Trusov B. G. Programmnaya sistema modelirovaniya fazovykh i khimicheskikh ravnovesiy pri vysokikh temperaturakh [Program system for the modeling phase and chemical equilibria at high temperatures]. Inzhenernyy zhurnal: nauka i innovatsii [Engineering magazine: Science and innovations]. 2012, I. 1, p. 21 (in Russian).

5.

6. Baza dannykh «Termicheskie Konstanty Veshchestv» [Database “Thermal Constants of Substances”.]. Available at: http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome. html/ welcome.html- (accessed 06 January 16) (in Russian).

7. Dorofeev A. A. Osnovy teorii teplovykh raketnykh dvigateley. Teoriya, raschet i proektirovanie [Fundamentals of the theory of thermal rocket engines. Theory, calculation and design]. Moscow, MGTU im. N. E. Baumana Publ., 2014 (in Russian).

8. Dorofeev A. A., Yagodnikov D. A., Chertkov K. O.Osobennosti rascheta sostava i temperatury produktov sgoraniya pereobogashchennykh kislorod-metanovykh topliv [Features of the calculation of the composition and temperature of the combustion pereobogaschenie oxygenmethane fuel products]. Izvestiya VUZov. Mashinostroenie [Proceedings of the universities. Mechanical Engineering]. 2015, I. 10, pp. 85-95 (in Russian).

9. Shishkov A. A. Gazodinamika porokhovykh raketnykh dvigateley: inzhenernye metody rascheta [Gasdynamics propellant rocket motors: engineering calculation methods]. Moscow, Mashinostroenie Publ., 1968 (in Russian).

10. Dorofeev A. A., Rozinskiy S. M. Raschet sostava i svoystv gazoobraznykh produktov sgoraniya topliva v skorostnoy kamere [Calculation of the composition and properties of gaseous combustion products in a high-speed camera]. Izvestiya VUZov. Mashinostroenie [Proceedings of the universities. Mechanical Engineering]. 2003, I. 4, pp. 49-52 (in Russian).

Login or Create
* Forgot password?