SPACE WEATHER IMPACT ON RADIO DEVICE OPERATION
Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are given based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of travelling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

Keywords:
space weather, technical effects
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

Вопросы влияния космической погоды на развитое технологическое общество, и в частности на работу радиоэлектронных средств, в последнее время встают особенно остро. В связи с вовлечением компьютерных и роботизированных средств в большую часть нашей повседневной жизни встает естественный вопрос: насколько устойчиво и корректно будет работать эта радиоэлектронная аппаратура (не всегда контролируемая обычными пользователями) и ее программное обеспечение при изменении внешних условий [Goodman, Aarons, 1990].

Проблема возникла достаточно давно в связи с помехами на системах проводной связи [Barlow, 1849] и сбоями аппаратуры на сетях электропередач [Love, Coїsson, 2016], особенно значительными в высоких широтах.

В настоящее время наблюдается резкое нарастание количества высокоточной техники, иногда имеющей особенности, несущественные в типичных условиях. Однако в условиях, отличающихся от ожидаемых, подобные особенности могут быть критичными для функционирования радиоэлектронных устройств, в том числе и бытовых приборов [Whiteson et al., 2014], использующихся практически повсеместно.

Проблема воздействия космической погоды на радиосредства для регулярных потребителей стала наиболее заметна при анализе данных глобальных систем позиционирования, являющихся в настоящее время де-факто основным элементом систем позиционирования и временной привязки. Как оказалось, основная функция этой системы — точное определение местоположения — зависит от характеристик окружающей среды. В частности, во время геомагнитных возмущений системы могут чаще и сильнее ошибаться, а иногда и отказывать [Afraimovich et al., 2004; Афраймович и др., 2007; Kim et al., 2014]. Этот эффект проявляется не только при позиционировании наземных, но и космических объектов [Xiong et al., 2016].

Внезапные возмущения космической погоды, приводящие к мощным рассеянным сигналам на установках радиолокации, радиосвязи и радиозондирования [Багаряцкий, 1961; Свердлов, 1982], требуют развития систем прогноза подобных помех и уменьшения степени их влияния на радиоаппаратуру.

Таким образом, оценка влияния космической погоды на работу радиосредств, прогноз последствий такого влияния, готовность к проблемам, вызванным таким влиянием, и ликвидация его возможных последствий являются насущными задачами, стоящими перед любым обществом, достаточно развитым технологически [The Sun to the Earth — and Beyond…, 2003; Solar and Space Physics…, 2013]. Промежуток между запуском оборудования в эксплуатацию, возникновением проблем его функционирования при эксплуатации и созданием и вводом в строй нового, более устойчивого оборудования во многих случаях составляет несколько лет. Особенно высоки эти сроки для космических средств. Естественным решением этой проблемы будут учет возможности отказа и оценка влияния эффектов космической погоды на конечный результат работы этого оборудования до его замены на новое, а также предсказание периодов возможных сбоев.

Обычно задача оценки влияния космической погоды на разные сферы человеческой деятельности и уменьшения последствий этого влияния решается различными способами — от введения в действие национальных стратегий [Solar and Space Physics…, 2013; National Space Weather Strategy, 2015], планов [National Space Weather Action Plan, 2015], законодательных актов [Obama, 2016] и доступного информирования [Space Weather — Effects on Technology, 2012] до привлечения энтузиастов и возможностей бытовых устройств и компьютеров (так называемая народная наука, citizen science [Barnard et al., 2014; Aurorasourus, 2016; Wikipedia, 2016]). Проводится стимулирование и поддержка различных систем мониторинга и прогноза, как глобальных [http://www.swpc. noaa.gov/], так и локальных, посвященных конкретным аспектам космической погоды [Love et al., 2016]. Детальные обзоры воздействия космической погоды на разные виды техники могут быть найдены в монографиях [The Sun to the Earth…, 2003; Solar and Space Physics…, 2013; Effects of Space Weather..., 2004; Goodman, 2005; Space Weather..., 2007].

К основным геоэффективным проявлениям космической погоды, активно исследуемым сегодня, можно отнести [National Space Weather Strategy, 2015]: солнечные радиовсплески, влияющие на работу приемных радиосредств; наведенные геоэлектрические поля, влияющие на проводные системы энергопитания и связи; ионизующую радиацию, влияющую на работоспособность электронной аппаратуры и жизнедеятельность организмов; расширение верхних слоев атмосферы, ведущее к повышению температуры и плотности этих слоев и влияющее на динамику и время жизни искусственных спутников Земли; а также ионосферные возмущения, влияющие на процессы распространения и рассеяния радиоволн.

Начало развертывания в ИСЗФ СО РАН системы импульсных декаметровых когерентных радаров, в том числе и в рамках проекта «Национальный гелиогеофизический комплекс РАН», поднимает вопросы непрерывного мониторинга космической погоды для решения не только фундаментальных, но и прикладных задач, важных для технологически развитого общества.

References

1. Aaraaons J. Global morphology of ionospheric scintillations. Proc. IEEE. 1982, vol. 70, no. 4, pp. 360-378. DOI: 10.1109/ PROC.1982.12314.

2. Aarons J., MacKenzie E., Bhavnani K. High latitude analytic formulas for scintillation levels. Radio Sci. 1980, vol. 15, no. 1, pp. 115-127. DOI:https://doi.org/10.1029/RS015i001p00115.

3. Afraimovich E.L. Ionospheric Faraday modulation of radioastronomical signals intensity. Doklady Akademii nauk [Doklady Earth Sci]. 2007, vol. 417, no. 6, pp. 818-822. (In Russian).

4. Afraimovich E.L., Astaf’eva E.I., Berngardt O.I., et al. Mid-latitude amplitude scintillations of GPS signals and GPS failures at the auroral oval boundary. Radiophysics and Quantum Electronics. 2004, vol. 47, no. 7, pp. 453-468. DOI:https://doi.org/10.1023/B:RAQE.0000047237.67771.bc.

5. Afraimovich E.L., Zherebtsov G.A., Smol’kov G.Ya. Total failure of the satellite navigation system GPS during December 6, 2006 solar flare. Doklady Akademii nauk [Doklady Earth Sci.]. 2007, vol. 416, no. 6, pp. 817-821. (In Russian).

6. Afraimovich E.L., Astafyeva E.I., Oinats A.V., et al. Global electron content: a new conception to track solar activity. Ann. Geophys. 2008, vol. 26, no. 2, pp. 335-344. 617 p. DOI: 10.5194/ angeo-26335-2008.

7. Akasofu S.-I. Physics of Magnetospheric Substorms. Boston, D. Reidel Publishing Co, 1977, DOI:https://doi.org/10.1007/978-94-010-1164-8.

8. Alebastrov V., Gojhman Je., Zamorin I. Osnovy zagorizontnoi radiolokatsii [Fundamentals of Over-the-Horizon Radiolocation]. Moscow, Radio i Svyaz’ Publ., 1984, 256 p. (In Russian).

9. Al’pert Ya.L. The current state of the problem of ionospheric studies. III. Some additional questions. Uspekhi fizicheskikh nauk [Soviet Physics-Uspekhi (Adv. Phys. Sci.)]. 1949, vol. 38, iss. 3, pp. 309-337. DOI:https://doi.org/10.3367/UFNr.0038.194907a.0309.

10. Aurorasourus. 2016. URL: http://aurorasaurus.org (accessed December 12, 2016).

11. Bagaryatsky B.A. Radar reflections from aurorae. Uspekhi fizicheskikh nauk [Soviet Physics-Uspekhi (Adv. Phys. Sci.)]. 1961, vol. 73, no. 2, pp. 197-241. DOI:https://doi.org/10.3367/UFNr.0073. 196102a. 0197. (In Russian).

12. Baker D.N., Jaynes A.N., Hoxie V.C., et al. An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature. 2014, vol. 515, no. 7528, pp. 531-534. DOI:https://doi.org/10.1038/nature13956.

13. Bala B., Lanzerotti L.J., Gary D.E., Thomson D.J. Noise in wireless systems produced by solar radio bursts. Radio Sci. 2002, vol. 37, no. 2, pp. 2-1-2-7. DOI:https://doi.org/10.1029/2001RS002481.

14. Bannister R. Simplified formulas for ELF propagation at shorter distance. Radio Sci. 1986, vol. 21, no. 3, pp. 529-537. DOI:https://doi.org/10.1029/RS021i003p00529.

15. Barlow W.H. On the spontaneous electrical currents observed in the wires of the electric telegraph. Phil. Trans. R. Soc. 1849, vol. 139, pp. 61-72.

16. Barnard L., Scott C., Owens M., et al. The Solar Stormwatch CME catalogue: results from the first space weather citizen science project. Space Weather. 2014, vol. 12, no. 12, pp. 657-674. DOI: 10.1002/ 2014SW001119.

17. Basler R.P., Price G.H., Tsunoda R.T., Wong T.L. Ionospheric distortion of HF signals. Radio Sci. 1988, vol. 23, no. 4, pp. 569-579. DOI:https://doi.org/10.1029/RS023i 004p00569.

18. Bastian T.S., Benz A.O., Gary D.E. Radio emission from solar flares. Annual Review of Astronomy and Astrophysics. 1998, vol. 36, no. 1, pp. 131-188. DOI:https://doi.org/10.1146/annurev.astro. 36.1.131.

19. Basu S., Basu Su. Equatorial scintillations - a review. J. Atmos. Solar-Terr. Phys. 1981, vol. 43, no. 5-6, pp. 473-489. DOI:https://doi.org/10.1016/0021-9169(81)90110-0.

20. Basu Su., Basu S., MacKenzie E., Whitney H.E. Morphology of phase and intensity scintillations in the auroral oval and polar cap. Radio Sci. 1985, vol. 20, no. 3, pp. 347-356. DOI:https://doi.org/10.1029/RS020i003p00347.

21. Basu Su., Basu S., Weber E.J., Coley W.R. Case study of polar cap scintillation modeling using DE 2 irregularity measurements at 800 km. Radio Sci. 1988, vol. 23, no. 4, pp. 545-553. DOI:https://doi.org/10.1029/RS023i004 p00545.

22. Béland J., Small K. Space Weather Effects on Power Transmission Systems: The Cases of Hydro-Qu’ebec and Transpower New Zealand Ltd. Effects of Space Weather on Technology Infrastructure. Netherlands, Kluwer Academic Publishers, 2004, pp. 287-299. DOI:https://doi.org/10.1007/1-4020-2754-0_15.

23. Benz A.O. Millisecond radio spikes. Solar Phys. 1986, vol. 104, pp. 99-110. DOI:https://doi.org/10.1007/BF00159950.

24. Berngardt O.I., Kutelev K.A., Potekhin A.P. SuperDARN scalar radar equations. Radio Sci. 2016, vol. 51, no. 10, pp. 1703-1724. DOI:https://doi.org/10.1002/2016rs006081.

25. Berngardt O.I., Zolotukhina N.A., Oinats A.V. Observations of field-aligned ionospheric irregularities during quiet and disturbed conditions with EKB radar: first results. Earth, Planets and Space. 2015a, vol. 67, 143. DOI:https://doi.org/10.1186/s40623-015-0302-3.

26. Berngardt O.I., Kutelev K.A., Kurkin V.I., et al. Bistatic sounding of high-latitude ionospheric irregularities using a decameter EKB radar and an UTR-2 radio telescope: first results. Radiophysics and Quantum Electronics. 2015b. vol. 58, no. 6, pp. 390-408. DOI:https://doi.org/10.1007/s11141015-9614-1.

27. Berngardt O.I., Perevalova N.P., Dobrynina A.A., et al. Toward the azimuthal characteristics of ionospheric and seismic effects of Chelyabinsk meteorite fall according to the data from coherent radar, GPS, and seismic networks. J. Geophys. Res.: Space Phys. 2015c, vol. 120, no.12, pp. 10754-10771. DOI:https://doi.org/10.1002/2015JA021549.

28. Berhgardt O.I., Perevalova N.P., Podlesnyi A.V., Kurkin V.I., Zherebtsov G.A. Vertical midscale ionospheric disturbances caused by surface seismic waves based on Irkutsk chirp ionosonde data in 2011-2016. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 4736-4754. DOI:https://doi.org/10.1002/2016JA023511.

29. Bilitza D., Altadill D., Zhang Y., et al. The International Reference Ionosphere 2012 - a model of international collaboration. J. Space Weather and Space Climate. 2014, vol. 4, A07. 12 p. DOI:https://doi.org/10.1051/swsc/ 2014004.

30. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I.A., Reinisch B., and Huang X. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather. 2017, vol. 15, iss. 2, pp. 418-429. DOI:https://doi.org/10.1002/2016sw001593.

31. Bland E.C., McDonald A.J., Menk F.W., Devlin J.C. Multipoint visualization of ULF oscillations using the Super Dual Auroral Radar Network. Geophys. Res. Lett. 2014, vol. 41, no. 18, pp. 6314-6320. DOI:https://doi.org/10.1002/2014 gl061371.

32. Boteler D.H. Geomagnetically induced currents: present knowledge and future research. IEEE Transactions on Power Delivery. 1994, vol. 9, no. 1, pp. 50-58. DOI:https://doi.org/10.1109/61.277679.

33. Budden K.G. The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere. Cambridge University Press, 1988, 688 p.

34. Buonsanto M.J. Ionospheric storms - a review. Space Sci. Rev. 1999, vol. 88, no. 3, pp. 563-601. DOI:https://doi.org/10.1023/A: 1005107532631.

35. Campbell W.H. Induction of auroral zone electric currents within the Alaska pipeline. Pure and Applied Geophysics. 1978, vol. 116, no. 6, pp. 1143-1173. DOI:https://doi.org/10.1007/BF00874677.

36. Cannon P.S., Angling M.J., Heaton J.A.T., et al. The Effects of Space Weather on Radio Systems with a focus on HF systems. Effects of Space Weather on Technology Infrastructure. Netherlands, Kluwer Academic Publishers, 2004, pp. 185-201. DOI: 10.1007/ 1-4020-2754-0_10.

37. Chau J.L., Kudeki E. Discovery of two distinct types of equatorial 150 km radar echoes. Geophys. Res. Lett. 2013, vol. 40, no. 17, pp. 4509-4514. DOI:https://doi.org/10.1002/grl.50893.

38. Chelpanov M.A., Mager P.N., Klimushkin D.Yu., et al. Experimental evidence of drift compressional waves in the magnetosphere: an Ekaterinburg coherent decameter radar case study. J. Geophys. Res.: Space Phys. 2016, vol. 121, no. 2, pp. 1315-1326. DOI:https://doi.org/10.1002/2015 JA022155.

39. Chen X.C., Lorentzen D.A., Moen J.I., et al. F-region ionosphere effects on the mapping accuracy of SuperDARN HF radar echoes. Radio Sci. 2016, vol. 51, no. 5, pp. 491-506. DOI:https://doi.org/10.1002/2016rs005957.

40. Chernov G.P. Fine Structure of Solar Radio Bursts. Springer, 2011, 300 p. DOI: 10.1007/ 978-3-642-20015-1. (Astrophys. Space Sci. Library. vol. 375).

41. Chisham G., Lester M., Milan S.E., et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientiffic achievements, new techniques and future directions. Surv. Geophys. 2007, vol. 28, no. 1, pp. 33-109. DOI:https://doi.org/10.1007/s10712-007-9017-8.

42. Daniell R.E., Brown L.D., Anderson D.N., et al. Parameterized ionospheric model: a global ionospheric parameterization based on first principles models. Radio Sci. 1995, vol. 30, no. 5, pp. 1499-1510. DOI: 10.1029/ 95RS01826.

43. Effects of Space Weather on Technology Infrastructure. Netherlands, Kluwer Academic Publishers, 2004. 334 p. DOI:https://doi.org/10.1007/1-4020-2754-0. (NATO Science Series II: Mathematics, Physics and Chemistry, vol. 176).

44. Erinmez I.A., Kappenman J.G., Radasky W.A. Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, no. 5-6, pp. 743-756. DOI:https://doi.org/10.1016/S1364-6826(02)00036-6.

45. Fel’dshtejn Ya.I., Vorob’ev V.G., Zverev V.L. Planetary patterns of auroras. The results of the International Geophysical Year (Review). Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2010, vol. 50, no. 4, pp.435-458. (In Russian).

46. Fridman S.V., Nickisch L.J., Hausman M., Zunich G. Assimilative model for ionospheric dynamics employing delay, Doppler, and direction of arrival measurements from multiple HF channels. Radio Sci. 2016, vol. 51, no. 3, pp. 176-183. DOI:https://doi.org/10.1002/2015rs005890.

47. Gauld J.K., Yeoman T.K., Davies J.A., et al. SuperDARN radar HF propagation and absorption response to the substorm expansion phase. Ann. Geophys. 2002, vol. 20, pp. 1631-1645. DOI:https://doi.org/10.5194/angeo-20-1631-2002.

48. Ghasemi A., Abedi A., Ghasemi F. Propagation Engineering in Radio Links Design. New York, Springer-Verlag, 2013, 549 p. DOI:https://doi.org/10.1007/978-1-4614-5314-7.

49. Gherm V.E., Zernov N.N., Strangeways H.J. Effects of diffraction by ionospheric electron density irregularities on the range error in GNSS dual-frequency positioning and phase decorrelation. Radio Sci. 2011, vol. 46, no. 3, RS3002. DOI:https://doi.org/10.1029/2010rs004624.

50. Gillies R.G., Hussey G.C., Sofko G.J., et al. Improvement of HF coherent radar line-of-sight velocities byestimating the refractive index in the scattering volume using radar frequency shifting. J. Geophys. Res. 2011, vol. 116, A01302. DOI: 10.1029/ 2010JA016043.

51. Ginzburg V.L. Rasprostranenie electromagnitnyhk voln v plazme [Propagation of Electromagnetic Waves in Plasma]. Moscow, Fizmatizdat Publ., 1960. 550 p. (In Russian).

52. Gombosi T.I., Baker D.N., Balogh A., Erickson P.J., Huba J.D., Lanzerotti L.J. Anthropogenic Space Weather. Space Sci. Rev. 2017, 55 p. DOI:https://doi.org/10.1007/s11214-017-0357-5.

53. Goodman J.M. Electron content inhomogeneities in the lower ionosphere. J. Geophys. Res. 1967. vol. 72, no. 21, pp. 5542-5546. DOI:https://doi.org/10.1029/JZ072i021p05542.

54. Goodman J.M. HF Communications: Science & Technology. New York, Van Nostrand Reinhold Publ., 1991, 631 p.

55. Goodman J.M. Space Weather & Telecommunications. Springer US, 2005, 382 p. DOI: 10.1007/ b102193.

56. Goodman J.M., Aarons J. 1990, Ionospheric effects on modern electronic systems. Proc. IEEE. vol. 78, no. 3, pp. 512-528. DOI:https://doi.org/10.1109/5.52228.

57. Groves K.M., Basu S., Weber E.J., et al. Equatorial scintillation and systems support. Radio Sci. 1997, vol. 32, no. 5, pp. 2047-2064. DOI:https://doi.org/10.1029/97rs00836.

58. Haldoupis C.I. A review on radio studies of auroral E-region ionospheric irregularities. Ann. Geophys. 1989, vol. 7, pp. 239-258.

59. Headrick J.M. Looking over the horizon. IEEE Spectrum. 1990, vol. 27, pp. 36-39. DOI:https://doi.org/10.1109/6.58421.

60. Headrick J.M., Skolnik M. Over the horizon radar in the HF band. Proc. IEEE. 1974, vol. 62, no.6, pp. 664-673. DOI:https://doi.org/10.1109/PROC.1974.9506.

61. Hernández-Pajares M., Wielgosz P., Paziewski J., Krypiak-Gregorczyk A., Krukowska M., Stepniak K., Kaplon J., Hadas T., Sosnica K., Bosy J., Orus-Perez R., Monte-Moreno E., Yang H., Garcia-Rigo A., Olivares-Pulido G. Direct MSTID mitigation in precise GPS processing. Radio Sci. 2017, 2016RS006159. DOI:https://doi.org/10.1002/2016rs006159.

62. Hunsucker R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev. Geophys. 1982, vol. 20, no. 2, pp. 293-315. DOI:https://doi.org/10.1029/RG020i002p00293.

63. Ionizing Radiation Effects in Electronics: From Memories to Imagers. CRC Press, 2015. 394 p.

64. Ivanov V.A., Kurkin V.I., Nosov V.E., et al. CHIRP ionosonde and its application in the ionospheric research. Radiophysics and Quantum electronics. 2003, vol. 46, no. 11, pp. 821-851.

65. Keil W. Radiation Effects on Spacecraft and Countermeasures, Selected Cases. Space Weather: Research Towards Applications in Europe. Dordrecht: Springer, 2007, pp. 231-240. DOI:https://doi.org/10.1007/1-4020-5446-7_21.

66. Kim H., Clauer C.R., Deshpande K., et al. Ionospheric irregularities during a substorm event: observations of ULF pulsations and GPS scintillations. J. Atmos. Solar-Terr. Phys. 2014, vol. 114, pp. 1-8. DOI:https://doi.org/10.1016/j.jastp. 2014.03.006.

67. Klobuchar J.A. A First-Order, Worldwide, Ionospheric Time Delay Algorithm. AFCRL-TR-75-0502. 1975, ADA018862, 26 p.

68. Klobuchar J.A., Anderson D.N., Bishop G.J., Doherty P.H. Measurements of transionospheric propagation parameters in the polar cap ionosphere. AFGL-TR-87-1021. 1987, no. 973, 12 p.

69. Knight P. Medium frequency propagation: a survey. BBC RD 1983/5 (RA210). 1983, 20 p.

70. Kravtsov Yu.A., Orlov Yu.A. Geometrichkaya optika neodnorodnykh sred [Geometrical Optics of Inhomogeneous Media]. Moscow, Nauka Publ., 1980, 304 p. (In Russian).

71. Kurkin V.I., Orlov I.I., Popov V.N. Metod normal’nykh voln v probleme korotkovolnovoi radiosvyazi [Normal Mode Method in a Problem of Short-Wave Radio Communication]. Moscow, Nauka Publ., 1981, 124 p. (In Russian).

72. Kutelev K.A., Berngardt O.I. Simulation SuperDARN radar ground backscatter signal in the presence of a moving midscale inhomogenity during the fall of Chelyabinsk meteorite]. Solnechno-zemnaja fizika [Solar-Terr. Phys.]. 2013, vol. 24, pp. 15-26. (In Russian)

73. Kutiev I., Tsagouri I., Perrone L., et al. Solar activity impact on the Earth’s upper atmosphere. J. Space Weather and Space Climate. 2013, vol. 3, no. 27, A06. DOI:https://doi.org/10.1051/swsc/2013028.

74. Landeau T., Gauthier F., Ruelle N. Further improvements to the inversion of elevation-scan backscatter sounding data. J. Atmos. Solar-Terr. Phys. 1997, vol. 59, no. 1, pp. 125-138.

75. Lee J. Radio emissions from solar active regions. Space Sci. Rev. 2007, vol. 133, pp. 73-102. DOI:https://doi.org/10.1007/s11214-007-9206-2.

76. Leonovich A.S., Mazur V.A. Eigen ultra-low magneto-acoustic oscillations of the near plasma sheet. Kosmicheskie issledovaniya [Space Res.]. 2008, vol. 46, no. 4, pp. 336-343. (In Russian).

77. Liu H., Wang W., Richmond A.D., Roble R.G. Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res.: Space Phys. 2010, vol. 115, no. A6, A00G01. DOI:https://doi.org/10.1029/2009JA015188.

78. Liu H., Jin H., Miyoshi Y., Fujiwara H., Shinagawa H. Upper atmosphere response to stratosphere sudden warming: local time and height dependence simulated by GAIA model. Geophys. Res. Lett. 2013, vol. 40, no. 3, pp. 635-640. DOI:https://doi.org/10.1002/grl.50146.

79. Lognonné P., Clévédé E., Kanamori H. Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical Earth model with realistic atmosphere. Geophys. J. Intern. 1998, vol. 135, no. 2, pp. 388-406. DOI:https://doi.org/10.1046/j.1365-246x.1998.00665.x.

80. Lotóaniu T.M., Singer H.J., Rodriguez J.V., et al. Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather. 2015, vol. 13, no. 8, pp. 484-502. DOI: 10.1002/ 2015SW001239.

81. Love J.J., Coïsson P. The geomagnetic blitz of September 1941. Eos. Earth & Space Science News. 2016, vol. 97, pp. 18-22. DOI:https://doi.org/10.1029/2016EO059319.

82. Love J.J., Pulkkinen A., Bedrosian P.A., et al. Geoelectric hazard maps for the continental United States. Geophys. Res. Lett. 2016, vol. 43, no. 18, pp. 9415-9424. DOI: 10.1002/ 2016GL070469.

83. Machol J.L., Green J.C., Redmon R.J., Viereck R.A., Newell P.T. Evaluation of OVATION Prime as a forecast model for visible aurorae. Space Weather. 2012, vol. 10, no. 3, S03005. DOI:https://doi.org/10.1029/2011SW000746.

84. Mager P.N., Berngardt O.I., Klimushkin D.Yu., et al. First results of the high-resolution multibeam ULF wave experiment at the Ekaterinburg SuperDARN radar: ionospheric signatures of coupled poloidal Alfven and drift-compressional modes. J. Atmos. Solar-Terr. Phys. 2015, vol. 130-131, pp. 112-126. DOI:https://doi.org/10.1016/j.jastp.2015.05.017.

85. Marshall R.A., Smith E.A., Francis M.J., et al. A preliminary risk assessment of the Australian region power network to space weather. Space Weather. 2011, vol. 9, no. 10, S10004. DOI:https://doi.org/10.1029/2011 SW000685.

86. Mikhailov A.V., Perrone L. Geomagnetic control of the midlatitude daytime foF1 and foF2 long-term variations: physical interpretation using European observations. J. Geophys. Res.: Space Phys. 2016, vol. 121, no. 7, pp. 7193-7203. DOI: 10.1002/ 2016ja022716.

87. Mullen J.P., MacKenzie E., Basu S., Whitney H. UHF/GHz scintillation observed at Ascension Island from 1980 through 1982. Radio Sci. 1985, vol. 20, no. 3, pp. 357-365. DOI:https://doi.org/10.1029/RS020i003p00357.

88. National Space Weather Action Plan. National Science and Technology Council, 2015. 42 p.

89. National Space Weather Strategy. National Science and Technology Council, 2015. 18 p.

90. Obama B. Executive Order: Coordinating Efforts to Prepare the Nation for Space Weather Events. 2016. URL: https://www. whitehouse. gov/the-press-office/ 2016/10/13/executive-order-coordinating-efforts-prepare-nation-space-weather-events (accessed December 12, 2016).

91. Odstrcil D. Modeling 3-D solar wind structure. Adv. Space Res. 2003, vol. 32, no. 4, pp. 497-506. DOI: http://dx.doi.org/https://doi.org/10.1016/S0273-1177(03)00332-6.

92. Ogawa T., Nishitani N., Tsugawa T., Shiokawa K. Giant ionospheric disturbances observed with the SuperDARN Hokkaido HF radar and GPS network after the 2011 Tohoku earthquake. Earth, Planets and Space. 2012, vol. 64, pp. 1295-1307. DOI:https://doi.org/10.5047/eps.2012.08.001.

93. Oinats A.V., Nishitani N., Ponomarenko P., Berngardt O.I., Ratovsky K.G. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth, Planets and Space. 2016, vol. 68, iss. 1, 8. DOI:https://doi.org/10.1186/s40623-016-0390-8.

94. Pappert R.A. Effects of a large patch of sporadic E on the nighttime propagation at lower ELF. J. Atmos. Solar-Terr. Phys. 1980, vol. 42, no. 5, pp. 417-425. DOI:https://doi.org/10.1016/0021-9169(80)90001-X.

95. Pappert R.A., Moler W.F. A theoretical study of ELF normal mode reflection and absorption produced by nighttime ionospheres. J. Atmos. Solar-Terr. Phys. 1978, vol. 40, no. 9, pp. 1031-1045. DOI:https://doi.org/10.1016/0021-9169(78)90008-9.

96. Patra A.K., Srinivasulu P., Pavan Chaitanya P.P. First results on low-latitude E- and F-region irregularities obtained using the Gadanki Ionospheric Radar Interferometer (GIRI). J. Geophys. Res.: Space Phys. 2014, vol. 119, no. 12, pp. 10276-10293. DOIhttps://doi.org/10.1002/2014ja020604.

97. Perrone L., Alfonsi L., Romano V., de Franceschi G. Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica. Ann. Geophys. 2004, vol. 22, no. 5, pp. 1633-1648. DOI:https://doi.org/10.5194/angeo-221633-2004.

98. Pirjola R. Geomagnetically induced currents during magnetic storms. IEEE Trans. Plasma Sci. 2000, vol. 28, no. 6, pp. 1867-1873. DOI:https://doi.org/10.1109/27.902215.

99. Principles of Modern Radar: Basic Principles. Scitech Publishing, 2010. 960 p. DOI:https://doi.org/10.1049/SBRA021E.

100. Priyadarshi S. A review of ionospheric scintillation models. Surveys in Geophysics. 2015, vol. 36, no. 2, pp. 295-324. DOI:https://doi.org/10.1007/s10712-015-9319-1.

101. Pulkkinen A., Lindahl S., Viljanen A., Pirjola R. Geomagnetic storm of 29-31 October 2003: geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather. 2005, vol. 3, no. 8, S08C03. DOI:https://doi.org/10.1029/200 4SW000123.

102. Radicella S.M., Leitinger R. The evolution of the DGR approach to model electron density profiles. Adv. Space Res. 2001, vol. 27, no. 1, pp. 35-40. DOI:https://doi.org/10.1016/S0273-1177(00) 00138-1.

103. Reinisch B.W., Haines D.M., Bibl K., et al. Ionospheric sounding in support of over-the-horizon radar. Radio Sci. 1997, vol. 32, no. 4, pp. 1681-1694. DOI:https://doi.org/10.1029/97rs00841.

104. Rino C.L., Matthews S.J. On the morphology of auroral zone radio wave scintillation. J. Geophys. Res. 1980, vol. 85, no. A8, pp. 4139-4151. DOI:https://doi.org/10.1029/JA085iA08p04139.

105. Rogov D.D., Moskaleva E.V., Zaalov N.Y. Modeling of high frequency radio wave absorption on oblique soundings during a solar X-ray flare. Adv. Space Res. 2015, vol. 55, no. 2, pp. 597-604. DOI:https://doi.org/10.1016/j.asr.2014.11.001.

106. Rostoker G. Geomagnetic indices. Rev. Geophys. 1972, vol. 10, no. 4, pp. 935-950. DOI:https://doi.org/10.1029/RG010i004p00935.

107. Schumann W.O. Über die strahlungslosen Eigensch-wingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Zeitschrift für Naturforschung A. 1952, vol. 7, iss. 2, pp. 149-154. DOI: 10.1515/ zna-1952-0202. (In German).

108. Settimi A., Ippolito A., Cesaroni C., Scotto C. Scientific review on the ionospheric absorption and research prospects of a complex eikonal model for one-layer ionosphere. Intern. J. Geophys. 2014, vol. 2014. DOI: 10.1155/ 2014/657434.

109. Settimi A., Pietrella M., Pezzopane M., Bianchi C. The IONORT-ISP-WC system: inclusion of an electron collision frequency model for the D-layer. Adv. Space Res. 2015, vol. 55, no. 8, pp. 2114-2123. DOI:https://doi.org/10.1016/j.asr. 2014.07.040.

110. Severe Space Weather Events - Understanding Societal and Economic Impacts: A Workshop Report. Washington, The National Academies Press, 2008, 144 p. DOI:https://doi.org/10.17226/12507.

111. Shibasaki K., Alissandrakis C.E., Pohjolainen S. Radio emission of the quiet Sun and active regions (invited Review). Solar Phys. 2011, vol. 273, pp. 309-337. DOI:https://doi.org/10.1007/s11207-011-9788-4.

112. Solar and Space Physics: A Science for a Technological Society. Washington, The National Academies Press, 2013, 446 p. DOI:https://doi.org/10.17226/13060.

113. Solar and Space Weather Radiophysics - Current Status and Future Developments. Dordrecht, Kluwer Academic Publishers, 2004, 424 p. DOI:https://doi.org/10.1007/1-4020-2814-8. (Astrophys. Space Sci. Library, vol. 314).

114. Sonnenschein E., Censor D., Rutkevich I., Bennett J.A. Ray trajectories in an absorbing ionosphere. J. Atmos. Solar-Terr. Phys. 1997, vol. 59, no. 16, pp. 2101-2110. DOI:https://doi.org/10.1016/s1364-6826(97)00035-7.

115. Space Weather - Effects on Technology. Canadian Space Weather Forecast Centre Publ., 2012, 3 p.

116. Space Weather: Research Towards Applications In Europe. Dordrecht, Springer, 2007. 332 p. DOI:https://doi.org/10.1007/1-4020-5446-7.

117. Stocker A.J., Arnold N.F., Jones T.B. The synthesis of travelling ionospheric disturbance (TID) signatures in HF radar observations using ray tracing. Ann. Geophys. 2000, vol. 18, no. 1, pp. 56-64. DOI:https://doi.org/10.1007/s00585-000-0056-4.

118. Sverdlov Ju.L. Morfologiya radioavrory [Morphology of Radioaurora]. Leningrad, Nauka Publ., 1982, 160 p. (In Russian).

119. The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics. Washington, The National Academies Press, 2003, 196 p. DOI:https://doi.org/10.17226/10477.

120. Thomson A.W.P., Dawson E.B., Reay S.J. Quantifying extreme behavior in geomagnetic activity. Space Weather. 2011, vol. 9, no. 10, S10001. DOI:https://doi.org/10.1029/2011SW000696.

121. Troshichev O., Janzhura A., Stauning P. Unified PCN and PCS indices: method of calculation, physical sense, and dependence on the IMF azimuthal and northward components. J. Geophys. Res.: Space Phys. 2006, vol. 111, no. A5, A05208. DOI:https://doi.org/10.1029/2005JA011402.

122. Tsunoda R.T. High-latitude F region irregularities: a review and synthesis. Rev. Geophys. 1988, vol. 26, no. 4, pp. 719-760. DOI:https://doi.org/10.1029/RG026i004p00719.

123. Tsunoda R.T., Maruyama T., Tsugawa T., Yokoyama T., Ishii M., Nguyen T.T., Ogawa T., Nishioka M. Off-great-circle paths in transequatorial propagation 2. Non-magnetic-field-aligned reflections. J. Geophys. Res.: Space Phys. 2016, vol. 121, iss. 11, pp. 11,176-11,190. DOI:https://doi.org/10.1002/2016ja 022404.

124. Uryadov V.P., Vertogradov G.G., Vertogradova E.G. Spread-F radar observations in the midlatitude ionosphere using an Ionosonde-Radiodirection Finder. Radiophys. Quantum Electro-nics. 2013, vol. 56, no. 1, pp. 1-11. DOI:https://doi.org/10.1007/s11141-0139411-7.

125. Vilensky I.M., Yampol’sky V.S., Tsydypov C.T. Rasp-rostranenie srednikh radiovoln v ionosfere [Propagation of Medium Radio Waves in the Ionosphere]. Nauka Publ., 1983, 116 p. (In Russian).

126. Wang J.C.H. A sky-wave propagation study in preparation for the 1605-1705 kHz broadcasting conference. IEEE Trans. on Broadcasting. 1985, vol. BC-31, no. 1, pp. 10-17. DOI: 10.1109/ TBC.1985.266546.

127. Warrington E.M., Stocker A.J., Siddle D.R., et al. Near real-time input to a propagation model for nowcasting of HF communications with aircraft on polar routes. Radio Sci. 2016, vol. 51, no. 7, pp. 1048-1059. DOI:https://doi.org/10.1002/2015rs005880.

128. Weber E.J., Tsunoda R.T., Buchau J., et al. Coordinated measurements of auroral zone enchancements. J. Geophys. Res. 1985, vol. 90, no. A7, pp. 6497-9513. DOI:https://doi.org/10.1029/JA090iA 07p06497.

129. Wernik A.W., Secan J.A., Fremouw E.J. Ionospheric irregularities and scintillation. Adv. Space Res. 2003, vol. 31, no. 4, pp. 971-981. DOIhttps://doi.org/10.1016/s02731177(02)00795-0.

130. Whiteson D., Mulhearn M., Shimmin C., et al. Observing ultra-high energy cosmic rays with smartphones. LANL ArXiv. 2014. arXiv:1410.2895.

131. Wikipedia. List of Citizen science projects. 2016. URL: https://en. wikipedia.org/wiki/List_of_citizen_science_projects (accessed December 12, 2016).

132. Xiong C., Stolle C., Lühr H. The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather. 2016, vol. 14, no. 8, pp. 563-577. DOI: 10.1002/ 2016SW001439.

133. Zasenko V.E., Ilyin N.V., Orlov I.I. Fine structure of signals reflected from the ionosphere. Issledovaniya po geomagnetizmu, aeronomii I fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. 1993, iss.100, pp. 158-173.

134. Zolesi B., Cander L.R. Ionospheric Prediction and Forecasting. Berlin, Heidelberg Springer Geophysics, 2014, 252 p. DOI:https://doi.org/10.1007/978-3-642-38430-1.

135. URL: http://www.swpc.noaa.gov/products/goes-x-ray-flux (accessed December 12, 2016).

136. URL: http://www.swpc.noaa.gov (accessed December 12, 2016).

Login or Create
* Forgot password?