Blagoveschensk, Blagoveshchensk, Russian Federation
In this work characteristics of modern trends in bioprinting and 3D bioprinting of tissues and organs of the respiratory system are presented. The attention is also drawn to the definition of concepts of bioprinting and 3D bioprinting in the foreign literature. Modern types of bioprinting, their disadvantages and prospects of development in the field of functional respiratory organs creation have been discussed. Special attention is given to the process of bioprinting of artificial trachea and bronchi as well as to the creation of the air-blood barrier.
bioprintig, 3D bioprinting, trachea, bronchi, air-blood barrier, respiratory system.
1. Bose S., Vahabzadeh S., Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater. Today 2013; 16(12):496-504. doi:https://doi.org/10.1016/j.mattod.2013.11.017.
2. Chia H.N, Wu B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015; 9:4. doi:https://doi.org/10.1186/s13036-015-0001-4.
3. Filipino students develop 3D printed trachea using stem cells from patients. Available at: www.3ders.org/articles/20150219-filipino-students-develop-3d-printed-trachea-using-stem-cells-from-patients.html
4. Fritsche C., Vacanti J., Sodian R., Lüders-Theuerkauf C., Stamm C., Hetzer R. Dual-compartment biocompatible polymer constructs with integrated vascular tree for pulmonary tissue engineering. Thorac. Cardiovasc. Surg. 2008; 56(S.1). doi:https://doi.org/10.1055/s-2008-1037880.
5. Fullerton J., Frodsham G., Day R. 3D printing for the many, not the few. Nat. Biotechnol. 2014; 32(11):1086-1087. doihttps://doi.org/10.1038/nbt.3056.
6. Horváth L., Umehara Y., Jud C., Blank F., Petri-Fink A., Rothen-Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 2015; 5:7974. doi:https://doi.org/10.1038/srep07974.
7. Jakab K., Norotte C., Marga F., Murphy K., Vunjak-Novakovic G., Forgacs G. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2010; 2(2):022001. doihttps://doi.org/10.1088/1758-5082/2/2/022001.
8. Jungebluth P., Alici E., Baiguera S., Blomberg P., Bozóky B., Crowley C., Einarsson O., Gudbjartsson T., Le Guyader S., Henriksson G., Hermanson O., Juto J.E., Leidner B., Lilja T., Liska J., Luedde T., Lundin V., Moll G., Roderburg C., Strömblad S., Sutlu T., Watz E., Seifalian A., Macchiarini P. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 2011; 378(9808):1997-2004. doi:https://doi.org/10.1016/s0140-6736(11)61715-7.
9. Koch L., Deiwick A., Schlie S., Michael S., Gruene M., Coger V., Zychlinski D., Schambach A., Reimers K., Vogt P., Chichkov B. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 2012; 109(7):1855-1863. doi:https://doi.org/10.1002/bit.24455.
10. Macchiarini P., Jungebluth P., Go T., Asnaghi M.A., Rees L.E., Cogan T.A., Dodson A., Martorell J., Bellini S., Parnigotto P.P., Dickinson S.C., Hollander A.P., Mantero S., Conconi M.T., Birchall M.A. Clinical transplantation of a tissue-engineered airway. Lancet 2008; 372(9655):2023-2030. doi:https://doi.org/10.1016/s0140-6736(08)61598-6.
11. Martin I, Simmons P, Williams D. Manufacturing Challenges in Regenerative Medicine. Sci. Transl. Med. 2014; 6(232):232fs16. doi:https://doi.org/10.1126/scitranslmed.3008558.
12. Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014; 32(8):773−785. doi:https://doi.org/10.1038/nbt.2958.
13. Ozbolat I.T., Yu Y. Bioprinting Toward Organ Fabrication: Challenges and Future Trends. IEEE Trans. Biomed. Eng. 2013; 60(3):691-699. doi:https://doi.org/10.1109/tbme.2013.2243912.
14. Pati F., Jang J., Ha D., Won Kim S., Rhie J., Shim J., Kim D., Cho D. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 2014; 5: 3935. doi:https://doi.org/10.1038/ncomms4935.
15. Reiffel A.J., Kafka C., Hernandez K.A., Popa S., Perez J.L., Zhou S., Pramanik S., Brown B.N., Ryu W.S., Bonassar L.J., Spector J.A. High-Fidelity Tissue Engineering of Patient-Specific Auricles for Reconstruction of Pediatric Microtia and Other Auricular Deformities. PLoS ONE 2013; 8(2):e56506. doi:https://doi.org/10.1371/journal.pone.0056506.
16. Seitz H., Deisinger U., Leukers B., Detsch R., Ziegler G. Different Calcium Phosphate Granules for 3-D Printing of Bone Tissue Engineering Scaffolds. Adv. Eng. Mater. 2009; 11(5):B41-B46. doi:https://doi.org/10.1002/adem.200800334.
17. Sinha G. Cell presses. Nat. Biotechnol. 2014; 32(8):716−719. doihttps://doi.org/10.1038/nbt.2983.
18. Song J., Ott H. Bioartificial Lung Engineering. Am. J. Transplant. 2011; 12(2):283-288. doi:https://doi.org/10.1111/j.1600-6143.2011.03808.x.
19. Tasoglu S., Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013; 31(1):10-19. doi:https://doi.org/10.1016/j.tibtech.2012.10.005.
20. Tseluyko S.S., Kushnarev V.A. Regenerative biological medicine: Achievements and Prospects. Amur Medical Journal 2016: 1(13):7-15.
21. Zopf D., Hollister S., Nelson M., Ohye R., Green G. Bioresorbable Airway Splint Created with a Three-Dimensional Printer. N. Engl. J. Med. 2013; 368(21):2043-2045. doi:https://doi.org/10.1056/nejmc1206319.