MOSKVA, Russian Federation
Moskva, Moscow, Russian Federation
Energy saving in all economic sectors is one of the most important strategic objectives of the 21st century. Energy efficiency programs are usually implemented in parallel with core activities of the company and thereby create an additional burden on limited budget. Cost-effectiveness of such a program is not always obvious so the decision to start can be delayed, and actual result may not be the expected one. In order to ensure economic efficiency the authors offer to use the tool of mathematical modeling to optimize energy efficiency program. The paper also presents the results of existing research analysis on the different approaches towards mathematical modeling of programs, the authors identify four main goals of the simulation. The authors’ approach is aimed at optimizing energy efficiency program for one or more criteria within certain restrictions.
program management, optimization model, short-term planning, energy efficiency, uncertainty, reinvestment.
Введение
Одной из стратегически важных задач сегодня является сбережение энергетических ресурсов. Энергоэффективная экономика напрямую влияет на развитие страны, повышение ее конкурентоспособности, благосостояния и уровня жизни граждан. Среди основных государственных задач стратегии России до 2030 г. — модернизация и создание новой энергетической инфраструктуры, повышение энергетической и экологической эффективности. В связи с этим неоспорима необходимость осуществления программ по повышению энергоэффективности в компаниях страны.
1. Barkalov S.A., Voropaev V.I., Sekletova G.I. Matematicheskie osnovy upravleniya proektami [Mathematical Foundations of Project Management]. Moscow, Vysshaya shkola Publ., 2005. 423 p.
2. Biryuk S. Metod Monte-Karlo. Modelirovanie po metodu Monte-Karlo. Analiz riskov s ispol´zovaniem metoda Monte-Karlo [Monte Carlo method. Simulation Monte Carlo. The risk analysis using Monte Carlo method]. Available at: http://spiderproject.com.ua/company/news/7262/
3. Bukhvalov A.V. Real´ny li real´nye optsiony [Is it possible to real options]. Rossiyskiy zhurnal menedzhmenta [Russian Management Journal]. 2006, I. 4(3), pp. 77-84.
4. Bukhvalov A.V. Real´nye optsiony v menedzhmente: vvedenie v problemu [Real Options in Management: introduction to the problem]. Rossiyskiy zhurnal menedzhmenta [Russian Management Journal]. 2004, I. 1, pp. 3-32.
5. Bukhvalov A.V. Real´nye optsiony v menedzhmente: klassifikatsiya i prilozheniya [Real Options in Management: Classification and Applications]. Rossiyskiy zhurnal menedzhmenta [Russian Management Journal]. 2004, I. 2, pp. 27-56.
6. Volkov I., Gracheva M. Veroyatnostnye metody analiza riskov [Probabilistic methods of risk analysis]. Available at: http://www.cfin.ru/finanalysis/monte_carlo2.shtml
7. Voropaev V.I., Gel´rud Ya.D. Obobshchennye stokhasticheskie setevye modeli dlya upravleniya kompleksnymi proektami (chast´ 1) [Generalized stochastic network models for complex project management (part 1)]. Upravlenie proektami i programmami [Project and Program Management.]. 2008, I. 1, pp. 2-13.
8. Voropaev V.I., Gel´rud Ya.D. Obobshchennye stokhasticheskie setevye modeli dlya upravleniya kompleksnymi proektami (chast´ 2) [Generalized stochastic network models for complex project management (Part 2)]. Upravlenie proektami i programmami [Project and Program Management.]. 2008, I. 2, pp. 92-104.
9. Voropaev V.I., Gel´rud Ya.D., Golenko-Ginzburg D.I., Ben-Yar A. Prinyatie resheniy v upravlyaemykh tsiklicheskikh al´ternativnykh setevykh modelyakh dlya proektov s determinirovannymi vetvleniyami [Decision-making under controlled cyclic alternative network models for projects with deterministic branching]. Upravlenie proektami i programmami [Project and Program Management]. 2010, I. 1, pp. 4-14.
10. Voropaev V., Gel´rud Ya., Klimenko O. Funktsional´nye modeli upravleniya proektnoy deyatel´nost´yu dlya raznykh zainteresovannykh storon [Functional project management model for different stakeholders]. Upravlenie proektami i programmami [Project and Program Management]. 2014, I. 4, pp. 266-278.
11. Golenko D.I. Statisticheskie metody setevogo planirovaniya i upravleniya [Statistical methods for network planning and management]. Moscow, Nauka Publ., 1969. 400 p.
12. Kosukhina M.A., Brusakova I.A., Barykin S.E. Metodika otsenki effektivnosti upravleniya korporativnymi finansami v usloviyakh neopredelennosti [Methods of assessing the effectiveness of corporate finance in the conditions of uncertainty]. Audit i finansovyy analiz [Audit and financial analysis]. 2012, I. 4, pp. 68-77.
13. Kryukov S.V. Bayesovy seti kak instrument modelirovaniya neopredelennosti pri prinyatii investitsionnykh resheniy [Bayesian networks as a tool for modeling uncertainty in investment decisions]. Ekonomicheskiy vestnik Rostovskogo gosudarstvennogo universiteta [Economic Gazette Rostov State University]. 2007, I. 5(1), pp. 106-111.
14. Kryukov S.V. Vybor metodov i modeley otsenki effektivnosti investitsionnykh proektov v usloviyakh neopredelennosti [Selection of methods and models for assessing the effectiveness of investment projects under conditions of uncertainty]. Ekonomicheskiy vestnik Rostovskogo gosudarstvennogo universiteta [Economic Gazette Rostov State University]. 2008, I. 6(3), pp. 107-113.
15. Lukashov A.V. Metod Monte-Karlo dlya finansovykh analitikov: kratkiy putevoditel´ [Monte Carlo method for financial analysts: a brief guide]. Upravlenie korporativnymi finansami [Management of corporate finances]. 2007, I. 01(19), pp. 22-39.
16. Nalivkin D.V. Ispol´zovanie posledovatel´nykh metodov Monte-Karlo dlya otsenivaniya riskov na finansovykh rynkakh [Using sequential Monte Carlo methods for the evaluation of risks in the financial markets]. Upravlenie bol´shimi sistemami: sbornik trudov [Managing large systems: Proceedings]. 2008, I. 21. Available at: http://cyberleninka.ru/article/n/ispolzovanie-posledovatelnyh-metodov-monte-karlo-dlyaotsenivaniya-riskov-na-finansovyh-rynkah
17. Privalov A.I. Matematicheskie modeli upravleniya proektami v reshenii sistemnykh problem ekonomiki [Mathematical model of project management in addressing systemic problems of economy]. Ekonomicheskie nauki [Economic sciences]. 2009, I. 1(50), pp. 337-340.
18. Saati T.L. Prinyatie resheniy. Metod analiza ierarkhiy [Making decisions. Analytic Hierarchy Process]. Moscow, Radio i svyaz´ Publ., 1989. 316 p.
19. Titarenko B.P. Upravlenie riskami v ramkakh sistemnoy modeli proektno-orientirovannogo upravleniya proektami [Risk management within the framework of a systemic model of project-oriented project management]. Upravlenie proektami i programmami [Project and Program Management]. 2006, I. 1, pp. 76-89.
20. Fel´ker R. Ispol´zovanie teorii igr v praktike upravleniya [Using game theory to practice management]. Problemy teorii i praktiki upravleniya [Problems of the theory and practice of management]. 1999, I. 5, pp. 86-93.
21. Kharshan´i Dzh., Zel´ten R. Obshchaya teoriya vybora ravnovesiya v igrakh [The general theory of equilibrium selection in games]. St. Petersburg, Ekonomicheskaya shkola Publ., 2001. 424 S.
22. Angling M. (1988). Resource planning and control in a multiproject environment. International Journal of Project Management, Vol. 6(4), pp. 197-201.
23. Beikci U., Bilge Ü, Ulusoy G. (2015). Multi-mode resource constrained multi-project scheduling and resource portfolio problem. European Journal of Operational Research, Vol. 240, pp. 22-31.
24. Brauer D.C., Naadimuthu G., LeeE.S. (1987).Effective program planning for multiple projects under limited resources. Mathematical Modelling, Vol. 9(7), pp. 547-552.
25. Chen V. (1994). A 0-1 goal programming model for scheduling multiple maintenance projects at copper mine. European Journal of Operational Research, Vol. 76(1), pp. 176-191.
26. Coyne K.P., Subramaniam S. (1996) Bringing discipline to strategy. The McKinsey Quarterly. Vol 4, pp. 14-25
27. Gonçalves J.F., Mendes J.J.M., Resende M.G.C. (2008). A genetic algorithm for the resource constrained multiproject scheduling problem. European Journal of Operational Research, Vol. 189(3), pp. 1171-1190.
28. Kannan A., Shanbhag U., Kim H. (2011). Strategic behavior in power markets under uncertainty. Energy Systems, Vol. 2, pp. 115-141.
29. Kim K., Yun Y., Yoon J., Gen M., Yamazaki G. (2005). Hybrid genetic algorithm with adaptive abilities for resourceconstrained multiple project scheduling. Computers in Industry, Vol. 56(2), pp. 143-160.
30. Krüger D., Scholl A. (2009). A heuristic solution framework for the resource constrained (multi-) project scheduling problem with sequence-dependent transfer times. European Journal of Operational Research, Vol. 197, pp. 492-508.
31. Liu M., Shan M., Wu J. (2014). Multiple R&D Projects Scheduling Optimization with Improved Particle Swarm Algorithm. The Scientific World Journal, pp. 1-7.
32. Liu S., Wang C.-J. (2010). Profit Optimization for Multiproject Scheduling Problems Considering Cash Flow. Journal of Construction Engineering and Management, Vol. 136(12), pp. 1268-1278.
33. Lova A., Maroto C., Tormos P. (2000). A multicriteria heuristic method to improve resource allocation in multiproject scheduling. European Journal of Operational Research, Vol. 127(2), pp. 408-424.
34. Marreco J., Carpio L. (2006). Flexibility valuation in the Brazilian power system: A real options approach, Energy Policy, Vol. 34, pp. 3749-3756.
35. Maylor H., Brady T., Cooke-Davies T., Hodgson D. (2006). From projectification to programmification. International Journal of Project Management, Vol. 24, pp. 663-674.
36. Mills E., Kromer S., Weiss G., Mathew P. (2006). From volatility to value: analysing and managing financial and performance risk in energy savings projects. Energy Policy, Vol. 34, pp. 188-199.
37. Mueller J. (2013). Estimating Arizona residents’ willingness to pay to invest in research and development in solar energy. Energy Policy, Vol. 53, pp. 462-476.
38. Pritsker A., Watters L., Wolfe P. (1969). Multiproject scheduling with limited resources: a zero-one programming approach. Management Science, Vol. 16 (1), pp. 93-108.
39. Siddiquia A., Marnay C., Wiser R. (2007). Real options valuation of US federal renewable nergy research, development, demonstration, and deployment, Energy Policy, Vol. 35, pp. 265-279.
40. Singh A. (2014). Resource Constrained Multi-Project Scheduling with Priority Rules and Analytic Hierarchy Process. Procedia Engineering, Vol. 69, pp. 725-734.
41. Speranza M.G., VercellisS. (1993). Hierarchical models for multi-project planning and scheduling. European Journal of Operational Research, Vol. 64, pp. 312-325.
42. Spinney P.J., Watkins G.C. (1996). Monte Carlo simulation techniques and electric utility resource decisions. Energy Policy, Vol. 24(2), pp. 155-163.
43. Tavares L.V. (1987). Optimal resource profiles for program scheduling. European Journal of Operational Research, Vol. 29(1), pp. 83-90.
44. Trypia M. (1980). Cost minimization of m simultaneous projects that require the same scarce resource. European Journal of Operational Research, Vol. 5(4), pp. 235-238.
45. Vásconez V., Giraud G., McIsaac F., Pham N.-S. (2015). The effects of oil price shocks in a new-Keynesian framework with capital accumulation.Energy Policy, Vol. 86, pp. 844-854.
46. Vithayasrichareon P., MacGillI. (2012). A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries.Energy Policy, Vol. 41, pp. 374-392.
47. Wiley V., Deckro R., Jackson J. (1998). Optimization analysis for design and planning of multi-project programs. European Journal of Operational Research, Vol. 107, pp. 492-506.
48. Zapata J., Hodge B., Reklaitis G. (2008). The multimode resource constrained multiproject scheduling problem: Alternative formulations. AIChEJournal, Vol. 54 (8), pp. 2101-2119.