Abstract and keywords
Abstract (English):
We discuss acceleration and transport of electrons in the circular flare SOL2024-03-25T06:37:00 of the M4.4 X-ray class, characterized by a record-short duration of hard X-ray emission pulse. We have used radio data in the 0.1–40 GHz range, including images of the flare region in the Siberian Radio Heliograph frequency range. Microwave and hard X-ray emissions are generated in the vicinity of the magnetic domain by the interaction of ropes visible at 1600 Å. The impulsive stage ended with a short peak <5 s long, recorded simultaneously at 35 GHz and in the 100–300 keV range. After the peak under ropes, a long loop in the ultraviolet (UV) rises and a broad plasma ejection appears which is directed along the outer spine observed before the flare. Large loops connect the spine and the remote source. There is a broadband microwave source at the remote footpoint at 215 arc. sec., with the delay of its maximum from the peak in the flare core being ~5 s, and the electron propagation velocity along the large loops estimated at one-third of the velocity of light. A distinctive feature of the radiation of the remote source was high degree of its circular polarization. The meter flare emission indicates that tops of large loops are filled with non-thermal electrons with large pitch angles. The set of spatial, spectral, and polarization characteristics of microwave sources obtained for the first time is discussed in the context of the known results on the nature of circular ribbon flares.

Keywords:
Sun, acceleration mechanisms, microwave bursts, meter bursts, circle ribbon flare
Text
Text (PDF): Read Download
References

1. Altyntsev A., Lesovoi S., Globa M., Gubin A., Kochanov A., Grechnev V., Ivanov E., Kobets V., Meshalkina N., et al. Multiwave Siberian Radioheliograph. Sol.-Terr. Phys. 2020, vol. 6, iss. 2, p. 30. DOI:https://doi.org/10.12737/stp-62202003.

2. Altyntsev A.T., Meshalkina N.S., Sych R.A., Kolotkov D.Y. Double peak quasi-periodic pulsations in a circular-ribbon flare. Astron. Astrophys. 2022, vol. 663, id. A149, 8 p. DOI:https://doi.org/10.1051/0004-6361/202243144.

3. Aschwanden M.J. Physics of the Solar Corona: An Introduction. Springer-Verlag; Praxis, 2004, 842 p.

4. Brown J.C., Melrose D.B., Spicer, D.S. Production of a collisionless conduction front by rapid coronal heating and its role in solar hard X-ray bursts. Astrophys. J. 1979, part 1, vol. 228, pp. 592–597. DOI:https://doi.org/10.1086/156883.

5. Chen X., Yan Y., Tan B., Huang J., Wang W., Chen L., et al. Quasi-periodic pulsations before and during a solar flare in AR 12242. Astrophys. J. 2019, vol. 878, no. 2, p. 78. DOI:https://doi.org/10.3847/1538-4357/ab1d64.

6. Dulk G.A., Marsh K.A. Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 1982, vol. 259, p. 350. DOI:https://doi.org/10.1086/160171.

7. Fleishman G.D., Melnikov V.F. Gyrosynchrotron emission from anisotropic electron distributions. Astrophys. J. 2003, vol. 587, iss. 2, pp. 823–835. DOI:https://doi.org/10.1086/368252.

8. Guidice D.A., Cliver E.W., Barron W.R., Kahler S. The Air Force RSTN System. Bull. of the American Astronomical Society. 1981, vol. 13, p. 553.

9. Kumar P., Nakariakov V.M., Cho K.S. Observation of a quasiperiodic pulsation in hard X-ray, radio, and extreme-ultraviolet wavelengths. Astrophys. J. 2016, vol. 822, no. 1, p. 7. DOI:https://doi.org/10.3847/0004-637X/822/1/7.

10. Ledenev V.G. Generation of electromagnetic radiation by an electron beam with a bump on the tail distribution function. Solar Phys. 1998, vol. 179, iss. 2, pp. 405–420. DOI:https://doi.org/10.1023/A:1005007026541.

11. Lee J., White S.M., Chen X., Chen Y., Ning H., Li Bo, Masuda S. Microwave study of a solar circular ribbon flare. Astrophys. J. Lett. 2020, vol. 901, p. L10. DOI:https://doi.org/10.3847/2041-8213/abb4dd.

12. Lemen J.R., Title A.M., Akin D.J., Boerner P.F, Chou C., Drake J.F., Duncan D.W., Edwards Ch.G., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 2012, vol. 275, no. 1-2, pp. 17–40. DOI:https://doi.org/10.1007/s11207-011-9776-8.

13. Lesovoi S.V., Altyntsev A.T., Ivanov E.F., Gubin A.V. A 96-antenna radioheliograph. Res. Astron. Astrophys. 2014, vol. 14, iss. 7, article id. 864–868. DOI:https://doi.org/10.48550/arXiv.1403.4748.

14. Lesovoi S.V., Kobets V. Correlation plots of the Siberian Radioheliograph. Sol.-Terr. Phys. 2017, vol. 3, iss. 1. pp. 19–25. DOI: arXiv:1705.10043.

15. Levin B.N., Melnikov V.F. Quasi-linear model for the plasma mechanism of narrow-band microwave burst generation. Solar Phys. 1993, vol. 148, iss. 2, pp. 325–340. DOI: 10.1007/ BF00645093.

16. Masson S., Pariat E., Aulanier G., Schrijver C.J. The nature of flare ribbons in coronal null-point topology. Astrophys. J. 2009, vol. 700, iss.1, pp. 559–578. DOI:https://doi.org/10.1088/0004-637X/700/1/559.

17. Meegan C., Lichti G., Bhat P.N., et al. The Fermi gamma-ray burst monitor. Astrophys. J. 2009, vol. 702. p. 791. DOI:https://doi.org/10.1088/0004-637X/702/1/791.

18. Meshalkina N.S., Uralov A.M., Grechnev V.V., Altyntsev A.T., Kashapova L.K. Eruptions of magnetic ropes in two homologous solar events of 2002 June 1 and 2: a key to understanding an enigmatic flare. PASJ. 2009, vol. 61, p. 791. DOI:https://doi.org/10.1093/pasj/61.4.791.

19. Meshalkina N.S., Altyntsev A.T. Heating manifestations at the onset of the 29 June 2012 flare. Sol.-Terr. Phys. 2024, vol. 10, iss. 3, pp. 11–17. DOI:https://doi.org/10.12737/stp-103202402.

20. Nakajima H., Nishio M., Enome S., Shibasaki K., Takano T., Hanaoka Y., Torii C., et al. The Nobeyama Radioheliograph. Proc. IEEE. 1994, vol. 82, p. 705.

21. Pontin D.I., Priest E.R., Galsgaard K. On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys. J. 2013, vol. 774, iss. 2, article id. 154, 10 p. DOI:https://doi.org/10.1088/0004-637X/774/2/154.

22. Priest E.R., Titov V.S. Magnetic reconnection at three-dimensional null points. Philosophical Transactions of the Royal Society of London Series. 1996, vol. A354(1721), pp. 2951–2992. DOI:https://doi.org/10.1098/rsta.1996.0136.

23. Shang Z., Xu K., Liu Y., Wu Z., Lu G., Zhang Y. Y., et al. A broadband solar radio dynamic spectrometer working in the millimeter-wave band. Astrophys. J. Suppl. Ser. 2022, vol. 258, p. 25. DOI:https://doi.org/10.3847/1538-4365/ac4257.

24. Shang Z., Wu Z., Liu Y., Bai Yu, Lu G., Zhang Y. Y., et al. The calibration of the 35–40 GHz solar radio spectrometer with the new moon and a noise source. Astrophys. J. Suppl. Ser. 2023, vol. 268, p. 45. DOI:https://doi.org/10.3847/1538-4365/acee00.

25. Sun X, Hoeksema J.T, Liu Y, Aulanier G., Su Y., Hannah I.G., Hock R.A. Hot spine loops and the nature of a late-phase solar flare. Astrophys. J. 2013, vol. 778, iss. 2, p. 139. DOI:https://doi.org/10.1088/0004-637X/778/2/139.

26. Tan C.M., Yan Y.H., Tan B.L., Yoshimi N., Tanaka H., Enome S. Study of calibration of solar radio spectrometers and the quiet-Sun radio emission. Astrophys. J. 2015, vol. 808, p. 61. DOI:https://doi.org/10.1088/0004-637X/808/1/61.

27. Torii C., Tsukiji Y., Kobayashi S., et al. Full-automatic radiopolarimeters for solar patrol at microwave frequencies. Proc. of the Research Institute of Atmospherics. Nagoya University, 1979, vol. 26, pp. 129–132.

28. Uralov A.M., Lesovoi S.V., Zandanov V.G., Grechnev V.V. Dual-filament initiation of a coronal mass ejection: observations and model. Solar Phys 2002, vol. 208, iss. 1, pp. 69–90. DOI:https://doi.org/10.1023/A:1019610614255.

29. Vlahos L., Papadopoulos K. On the upconversion of ion-sound to Langmuir turbulence. Astrophys. J. 1979, Part 2. Letters to the Editor, vol. 234, Dec. 15, 1979, pp. L217, L218. Navy-supported research. DOI:https://doi.org/10.1086/183143.

30. Yan Y., Zhang J.,Wang W., Liu F., Chen Z., Ji G. The Chinese Spectral Radioheliograph — CSRH. Earth, Moon, and Planets. 2009, vol. 104, iss. 1-4, pp. 97–100. DOI:https://doi.org/10.1007/s11038-008-9254-y.

31. Yan Yihua, Chen Linjie, Yu Sijie. First radio burst imaging observation from Mingantu Ultrawide Spectral Radioheliograph. IAUS. 2016, vol. 320, pp. 427–435. DOI:https://doi.org/10.1017/S174392131600051X.

32. Wang Wei, Yan Yihua, Liu D., Chen Z., Su C., Liu F., et al. Calibration and data processing for a Chinese Spectral Radioheliograph in the decimeter wave range. Publications Astronomical Society Japan. 2013, vol. 65, iss. SP1, id. S18. DOI:https://doi.org/10.1093/pasj/65.sp1.S18.

33. Zhang Q. Circular-ribbon flares and the related activities. Rev. Modern Plasma Physics. 2024, vol. 8, iss. 1, article id. 7. DOI:https://doi.org/10.1007/s41614-024-00144-9.

34. Zhdanov D.A., Zandanov V.G. Broadband microwave spectropolarimeter. Central European Astrophysical Bulletin. 2011, vol. 35. p. 223.

35. Zheleznyakov V.V., Zlotnik E.Ya., Zaitsev V.V., Shaposhnikov V.E. Double plasma resonance and its manifestations in radio astronomy. Physics-Uspekhi. 2016, vol. 59, no. 10. DOI:https://doi.org/10.3367/UFNe.2016.05.037813.

36. URL: https://radiomag.iszf.irk.ru/books/sibirskii-radiogeliograf/page/sintez-radioizobrazenii-s-pomoshhiu-paketa-srh-synth (accessed June 25, 2025).

37. URL: https://badary.iszf.irk.ru/srhCorrPlot.php (accessed June 25, 2025).

38. URL: https://ckp-rf.ru/catalog/usu/4138190/ (accessed June 25, 2025).

39. URL: http://ckp-angara.iszf.irk.ru/ (accessed June 25, 2025).

Login or Create
* Forgot password?