PHYSICAL MODELING OF CONCENTRATED FIRE WHIRLS (REVIEW)
Abstract and keywords
Abstract (English):
Fire tornadoes are an example of environmental disaster, which causes an enormous damage to the environment and leads to destruction and human fatalities. Fire whirls is a rare but potentially catastrophic form of fire, which dramatically increases the danger of occurring natural and man-made fires and their consequences. They occur in large forest fires, massive fires in cities and major accidents at flammable objects of petrochemical, timber industry, etc. providing full physical modeling of fire whirls is complicated by high risks, costs and complexity of controlling boundary conditions, so the major part of information is obtained through small-scale experiments. The review describes experimental facilities for generating different types of stationary and non-stationary fire vortices and studying their characteristics. We presented and analyzed the results of experiments on the burning rate and the main parameters of fire whirls (height, velocity, temperature).We estimated critical velocity of crosswinds, which yields to generation of the most intensive fire vortices. The features and conditions for the generation of fire whirls during the fires in closed spaces were considered.

Keywords:
fire whirls, concentrated vortices, physical modeling.
Text
Publication text (PDF): Read Download

1. Введение

Воздушные и огненные смерчи являются примерами экологических катастроф, наносящих огромный ущерб окружающей среде и приводящих к многочисленным разрушениям и человеческим жертвам. Огненные вихри — редкая, но потенциально катастрофическая форма огня. Эти вертикально ориентированные вращающиеся огненные факелы драматически увеличивают опасность происходящих природных и техногенных пожаров и их последствия [1–4]. По сравнению с воздушными смерчами огненные смерчи довольно редкие природные явления, которые возникают при крупных лесных пожарах, массовых пожарах в городах и авариях на крупных пожароопасных объектах нефтехимии, лесоперерабатывающей промышленности и других (рис. 1, см. обл., с. 3). Последствиями атомной бомбардировки Хиросимы (1945 г.), массированных бомбардировок Гамбурга (1943 г.) и Дрездена (1945 г.), Касселя и Дармштадта стали опасные продолжительные неуправляемые пожары [5]. После множественных одновременных возгораний в условиях города, плотно насыщенного горючими материалами, пламена сливались, образуя достаточно однородно горящую площадь, вследствие чего возникли огненные смерчи. В 1926 г. в Калифорнии (США) в результате удара молнии в нефтехранилище также наблюдались огненные смерчи [6].

References

1. Musham H.A. The Great Chicago fire, Papers in Illinois State History and Transaction, 1941. — pp. 69–189.

2. Gess D., Lutz W., Fire Storm in Peshtigo: A Town, Its People and the Deadliest Fire in American History, Henry Holt Publishing, 2002.

3. Soma S., Saito K., A Study of Fire Whirl on Mass Fires Using Scaling Models, in: Proc. First Int. Symp. on Scale Modeling, JSME, Tokyo, Japan, 1988.

4. Forthofer J.M., Goodrick S.L. Review of Vortices in Wildland Fire. J. Combust. — 2011. — Article ID 984363. — 14 pp.

5. Ebert C.H.V. Hamburg`s Fire Storm Weather. NFPA Quarterly. — 1963. — V. 56. — P. 253–260.

6. Hissong J. Whirlwinds at Oil-Tank Fire, San Luis Obispo, California. Monthly Weather Review. — 1926. — V. 54. — P. 161–163.

7. Goens D.W. Fire Whirls. NOAA Technical Memorandum NWS WR-129, 1978. — 15 p.

8. Chuah K.H., Kuwana K., Saito K. Modeling a Fire Whirl Generated over a 5-cm-Diameter Methanol Pool Fire. Combust. Flame. — 2009. — V. 156. — P. 1828–1833.

9. Chuah K.H., Kushida G. The Prediction of Flame Heights and Flame Shapes of Small Fire Whirls. Proc. Combust. Inst. — 2007. — V. 31. — P. 2599–2606.

10. Burke S.P., Schumann T.E.W. Diffusion Flames. Ind. Eng. Chem. — 1928. — V. 20. — P. 998–1004.

11. Roper F.G. The Prediction of Laminar Jet Diffusion Flame Sizes: Part 1. Theoretical Model. Combust. Flame. — 1977. — V. 29. — P. 219–226.

12. Emmons H.W., Ying S.J. The Fire Whirl. Proc. Combust. Inst. — 1967. — V. 11. — P. 475–488.

13. Byram G.M., Martin R.E. Fire Whirlwinds in the Laboratory. Fire Control Notes. — 1962. — V. 33. — P. 13–17.

14. Martin R.E., Pendleton D.W., Burgess W. Effect of Fire Whirlwind Formation on Solid Fuel Burning Rates. Fire Technology. — 1976. — V. 12. — № 1. — P. 33–40.

15. Byram G.M., Martin R.E. The Modeling of Fire Whirlwinds. Forest Science. — 1970. — V. 16. — № 4. — P. 386–399.

16. Soma S., Saito K. Reconstruction of Fire Whirls Using Scale Models. Combust. Flame. — 1991. — V. 86. — P. 269–284.

17. Satoh K., Yang K.T. Experimental Observations of Swirling Fires. Proc. of ASME Heat Transfer Division. — 1996. — HTD-V.335. — № 4. — P. 393–400.

18. Satoh K., Yang K.T. Simulation of Swirling Fires Controlled by Channeled Self-Generated Entrainment Flows. Fire Safety Science. Proc. of the 5th Int. Symp. — 1997. — P. 201–212.

19. Lei J., Liu N., Zhang L., Chen H., Shu L., Chen P., Deng Z., Zhu J., Satoh K., de Ris J.L. Experimental Research on Combustion Dynamics on Medium-Scale Fire Whirl. Proc. Combust. Inst. — 2011. — V. 33. — P. 2407–2415.

20. Zhou K., Liu N., Lozano J.S., Shan Y., Yao B., Satoh K. Effect of Flow Circulation on Combustion Dynamics of Fire Whirl. Proc. Combust. Inst. — 2013. — V. 34. — P. 2617–2624.

21. Tarifa C.S. Open Fires. Instituto Nacional de Tecnica Aerospacial Esteban Teradas. Madrid, 1967.

22. Kung H.C., Stavrianidis P. Buoyant Plumes of Large-Scale Pool Fires. Proc. Combust. Inst. — 1982. — V. 19. — P. 905–912.

23. Klassen M.E., Gore J.P. Structure and Radiation Properties of Pool Fires. In: NIST GCR 94–651, National Institute of Standards and Technology, Gaithersburg, MD, 1994.

24. Koseki H., Yumoto T. Air Entrainment and Thermal Radiation from Heptane Pool Fires. Fire Technology. — 1988. — V. 24. — P. 33–47.

25. Koseki H. Combustion Properties of Large Liquid Pool Fires. Fire Technology. — 1989. — V. 25. — P. 241–255.

26. Blinov V.I., Khudiakov G.N. Certain Laws Governing Diffusive Burning of Liquids. Fire Res. Abstr. Rev. — 1959. — V. 1. — № 2. — P. 41–44.

27. Kuwana K., Morishita S., Dobashi R., Chuah K.H., Saito K. The Burning Rate`s Effect on the Flame Length of Weak Fire Whirls. Proc. Combust. Inst. — 2011. — V. 33. — P. 2425–2432.

28. Lei J., Liu N., Zhang L., Satoh K. Temperature, Velocity and Air Entrainment of Fire Whirl Plume: a Comprehensive Experimental Investigation. Combust. Flame. — 2015. — V. 162. — P. 745–758.

29. Akhmetov D.G., Gavrilov N.V., Nikulin V.V. Flow Structure in a Fire Tornado-Like Vortex. Doklady Physics. — 2007. — V. 52. — № 11. — P. 592–595.

30. Grishin A.M., Golovanov A.N., Sukov Y.V. Physical Modeling of Firestorms. Doklady Physics. — 2004. — V. 49. — № 3. — P. 191–193.

31. Grishin A.M., Golovanov A.N., Kolesnikov A.A., Strokatov A.A., Tsvyk R.S. Experimental Study of Thermal and Fire Tornados. Doklady Physics. — 2005. — V. 50. — № 2. — P. 66–68.

32. Grishin A.M., Reino V.V., Sazanovich V.M., Tsvyk R.Sh., Sherstobitov M.V. Experimental Study of Fire Tornado. Atmospheric and Oceanic Optics. — 2008. — V. 21. — № 2. — P. 136–141.

33. Grishin A.M., Golovanov A.N., Sukov Ya.V., Tsvyk R.Sh., Physical modeling of fire tornados. Atmospheric and Oceanic Optics. — 2008. — V. 21. — № 9. — P. 661–667.

34. Vyalykh D.V., Dubinov A.E., Kolotkov D.Yu., Sadovoi S.A., Sadchikov E.A. A Portable Hand-Driven Solid-Fuel Device for Generating Fire Whirls. Instruments and Experimental Techniques. — 2013. — V. 56. — № 3. — P. 347–348.

35. Lei J., Liu N., Zhang L., Deng Z., Akafuah N.K., Li T., Saito K., Satoh K. Burning Rates of Liquid Fuels in Fire Whirls. Combust. Flame. — 2012. — V. 159. — P. 2104–2114.

36. Lei J., Liu N., Lozano J.S., Zhang L., Deng Z., Satoh K. Experimental Research on Flame Revolution and Precession of Fire Whirls. Proc. Combust. Inst. — 2013. — V. 34. — P. 2607–2615.

37. Lei J., Liu N., Satoh K. Buoyant Pool Fires under Imposed Circulations before the Formation of Fire Whirls. Proc. Combust. Inst. — 2015. — V. 35. — P. 2503–2510.

38. Chuah K.H., Kuwana K., Saito K., Williams F.A. Inclined Fire Whirls. Proc. Combust. Inst. — 2011. — V. 33. — P. 2417–2424.

39. Kuwana K., Sekimoto K., Minami T., Tashiro T., Saito K. Scale-Model Experiments of Moving Fire Whirl over a Line Fire. Proc. Combust. Inst. — 2013. — V. 34. — P. 2625–2631.

40. Kuwana K., Sekimoto K., Saito K., Williams F.A., Hayashi Y., Masuda H. Can We Predict the Occurrence of Extreme Fire Whirls? AIAA J. — 2007. — V. 45. — P. 16–19.

41. Kuwana K., Sekimoto K., Saito K., Williams F.A. Scaling Fire Whirls. Fire Safety Journal. — 2008. — V. 43. — P. 252–257.

42. Chen Z., Satoh K., Wen J., Huo R., Hu L. Burning Behavior of Two Adjacent Pool Fires Behind a Building in a Cross-Wind. Fire Safety Journal. — 2009. — V. 44. — P. 989–996.

43. Emori R.I., Saito K. Model Experiment of Hazardous Forest Fire Whirl. Fire Technology. — 1982. — V. 18. — № 4. — P. 319–327.

44. Buckingham E. On Physically Similar Systems: Illustrations of the Use of Dimensional Equations. Phys. Rev. — 1914. — V. 4. — P. 345–376.

45. Emori R.I., Saito K., Sekimoto K. Scale Models in Engineering: Its Theory and Applications. Third ed., Gyhodo, Tokyo, Japan, 2000.

46. Ebert C.H.V. The Meteorological Factor in the Hamburg Fire Storm. Weatherwise. — 1963. — V. 16. — P. 70–75.

47. Lee S.L., Otto F.W. Gross Vortex Activities in a Simple Simulated Urban Fire. Proc. Combust. Inst. — 1974. — V. 15. — P. 157–162.

48. Church C.R., Snow J.T., Dessens J. Intense Atmospheric Vortices Associated with a 1000 MW Fire. Bull. Am. Meteorol. Soc. — 1990. — V. 61. — P. 682–694.

49. Dessens J. Man-Made Tornadoes. Nature. — 1962. — V. 193. — P. 13–14.

50. Thomas P.H. The Size of Flames from Natural Fires. Proc. Combust. Inst. — 1963. — V. 9. — P. 844–859.

51. Williams F.A. Combustion Theory: the Fundamental Theory of Chemically Reacting Flow Systems. Benjamin/ Cummings Pub. Co., Menlo Park, CA, 1985.

52. Chen A., Cui X., Wang W. Theoretical Analysis and Experimental Study of Whirling Flames in Enclosure Fires. Fire Technology. — 2013. — V. 49. — P. 827–842.

53. Mccaffrey B.J., Quintiere J.G., Harkleroad M.F. Estimating Room Temperatures and the Likelihood of Flashover Using Fire Test Data Correlations. Fire Technology. — 1981. — V. 17. — № 2. — P. 98–119.

54. Karlsson B., Quintiere J.G. Enclosure Fire Dynamics. CRC Press, Boca Raton, 2000.

55. Zhou R., Wu Z.N., Fire Whirls due to Surrounding Flame Sources and the Influence of the Rotation Speed on the Flame Height. J. Fluid Mech. — 2007. — V. 583. — P. 313–345.

56. Zhou R. Applications of the Equivalent Gap Fraction Criterion Method for Fire Whirl Risk Evaluation and Prevention in a Real Fire Disaster. Fire Technology. — 2014. — V. 50. — P. 143–159.

57. Wang P., Liu N., Zhang L., Bai Y., Satoh K. Fire Whirl Experimental Facility with No Enclosure of Solid Walls: Design and Validation. Fire Technology. — 2015. — V. 51. — № 4. — P. 951–969.

58. Varaksin A.Yu., Romash M.E., Kopeitsev V.N. The Possibility of Generation of Concentrated Fire Vortices without Forced Swirling. Doklady Physics. — 2014. — V. 59. — № 5. — P. 203–205.

59. Varaksin A.Yu., Protasov M.V., Romash M.E., Kopeitsev V.N. Generation of Free Concentrated Fire Vortices under Laboratory Conditions. High Temperature. — 2015. — V. 53. — № 4. — P. 595–598.

60. Varaksin A.Yu., Romash M.E., Kopeitsev V.N., Gorbachev M.A. Simulation of Free Heat Vortexes: Generation, Stability, Control. High Temperature. — 2010. — V. 48. — № 6. — P. 918–925.

61. Varaksin A.Y., Romash M.E., Kopeitsev V.N. Tornado-Like Gas-Solid Flow. The 6th Int. Symp. on Multiphase Flow, Heat Mass Transfer and Energy Conversion. AIP Conference Proc. — 2010. — V. 1207. — P. 342–347.

62. Varaksin A.Y., Romash M.E., Kopeitsev V.N., Gorbachev M.A. Experimental Study of Wall-Free Non-Stationary Vortices Generation due to Air Unstable Stratification. Int. J. Heat Mass Transfer. — 2012. — V. 55. — P. 6567–6572.

Login or Create
* Forgot password?