Abstract and keywords
Abstract (English):
аpproximations of signals are considered by integer shifts of the Gauss functions-quadratic exponentials. A new method is proposed for finding nod function for this problem which is based on solutions of cut systems of linear equations.

Keywords:
interpolation, Gauss functions, nod functions, Jacobi theta-functions, signals.
Text

УДК 517.518.85

метод конечномерных приближений сигналов в задачах квадратичной экспоненциальной интерполяции

METHOD OF FINITE DIMENSIONAL SIGNAL APPROXIMATIONS IN PROBLEMS OF QUADRATIC EXPONENTIAL INTERPOLATION

Ситник С.М.

Тимашов А.С.

Воронежский институт МВД России

г. Воронеж, Россия.

DOI: 10.12737/16946

 

Аннотация: рассматриваются аппроксимации сигналов при помощи целочисленных сдвигов функций Гаусса – квадратичных экспонент. Предложен метод нахождения узловой функции для данной задачи интерполяции, основанный на решениях усечённых систем линейных уравнений.

Summary: аpproximations of signals are considered by integer shifts of the Gauss functions-quadratic exponentials. A new method is proposed for finding nod function for this problem which is based on solutions of cut systems of linear equations.

Ключевые слова: интерполяция, функции Гаусса, узловые функции, тета-функции Якоби, сигналы.

Keywords: interpolation, Gauss functions, nod functions, Jacobi theta-functions, signals.

 

 

Изучим задачу о приближении сигналов произвольной природы (электрических, информационных и т.д.) в виде ряда по системе целочисленных сдвигов функции Гаусса (квадратичной экспоненты с параметрами). Для численного анализа и приложений основную роль играют приближения данного типа конечными суммами, которые возникают при усечении соответствующих рядов. Исследованию таких конечных приближений и посвящена данная работа. Историю вопроса, основные результаты и многочисленные приложения см. в [1-3].

References

1. Zhuravlev M.V., Kiselev E.A., Minin L.A., Sitnik S.M. Teta-funktsii Yakobi i sistemy tselochislennykh sdvigov funktsiy Gaussa. Sovremennaya matematika i ee prilozheniya. T. 67. Uravneniya v chastnykh proizvodnykh.- 2010. - S. 107-116.

2. Minin L.A., Sitnik S.M., Zhuravlev M.V. O vychislitel´nykh osobennostyakh interpolyatsii s pomoshch´yu tselochislennykh sdvigov gaussovykh funktsiy. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta.- 2009.- № 13 (68), 17/2. -S. 89-99.

3. Zhuravlev M.V., Kiselev E. A., Minin L. A., S. M. Sitnik. Jacobi theta-functions and systems of integral shifts of Gaussian functions. Journal of Mathematical Sciences, Springer.- 2011, Vol. 173, № 2. - pp. 231-241.

4. Sitnik S.M., Timashov A.S. Raschet konechnomernoy matematicheskoy modeli v zadache kvadratichnoy eksponentsial´noy interpolyatsii. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Mate-matika, Fizika.-2013.- №19 (162). Vyp. 32.- S. 184-186.

5. Sitnik S.M., Timashov A.S. Prilozheniya eksponentsial´noy approksimatsii po tselochislennym sdvigam funktsiy Gaussa. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologiy.- 2013.- № 2 (56).- S. 90-94.

6. Sitnik S.M., Timashov A.S., Ushakov S.N. Metod konechnomernykh priblizheniy v zadachakh kvadratichnoy eksponentsial´noy interpolyatsii. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Matematika. Fizika. 2015, № 17 (214), vyp. 40, S. 130-142.

7. Minin L.A., Sitnik S.M., Ushakov S.N. Povedenie koeffitsientov uzlovykh funktsiy, postroennykh iz ravnomernykh sdvigov funktsiy Gaussa i Lorentsa//Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika, Fizika. 2014, №7 (183), Vypusk 35, S. 214-217.

8. Kiselev E.A., Minin L.A., Novikov I. Ya., Sitnik S. M. O konstantakh Rissa dlya nekotorykh sistem tselochislennykh sdvigov// Matematicheskie zametki. 2014, Tom 96, vypusk 2, S. 239-250.

9. S.M. Sitnik, A.S. Timashov. Metod konechnomernykh priblizheniy v zadachakh kvadratichnoy eksponentsial´noy interpolyatsii signalov. Vestnik Voronezhskogo instituta MVD Rossii.2014, № 2, S. 163-171.

10. E.A. Kiselev, L.A. Minin, I.Ya. Novikov, S.M. Sitnik. On the Riesz Constants for Systems of Integer Translates. Mathematical Notes. Springer. 2014, Vol. 96 (1-2), P. 228-238.

11. S.M. Sitnik. Obobshchennye diskretnye preobrazovaniya Fur´e i ikh spektral´nye svoystva. "Novye informatsionnye tekhnologii v avtomatizirovannykh sistemakh". Materialy semnadtsatogo nauchno-prakticheskogo seminara. M.: Institut prikladnoy matematiki im. M.V. Keldysha RAN, 2014. S. 281-291.

12. S.M. Sitnik. A.S. Timashov. Vychislitel´nye aspekty metoda kvad-ratichnoy eksponentsial´noy interpolyatsii v zadachakh teorii signalov. "Novye informatsionnye tekhnologii v avtomatizirovannykh sistemakh". Materialy semnadtsatogo nauchno-prakticheskogo seminara. M.: Institut prikladnoy matematiki im. M.V. Keldysha RAN, 2014. S. 292-300.

13. A.I. Nedoshivina, S.M. Sitnik. Prilozheniya geometricheskikh algo-ritmov lokalizatsii tochki na ploskosti k modelirovaniyu i szhatiyu informatsii v zadachakh videonablyudeniy. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2013, T. 9 (4), S. 108-111.

14. S.M. Sitnik. Komp´yuternyy analiz spektral´nykh svoystv modifi-tsirovannykh diskretnykh preobrazovaniy Fur´e. Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk. 2007, T. 9 (1), C. 98-103.


Login or Create
* Forgot password?