The adjustment of the forest machine hydraulic unit power control system can be made through the PID con-troller. If a hydraulic unit malfunction is detected, the block makes changes to the control system. Therefore, the aim of the study was to increase the reliability of forest machine hydraulic manipulators by introducing a neural network PID controller block into the control of the forwarder hydraulic manipulator. The research methods include methods for modeling the automatic control system in feedback loops for automatically maintaining process parameters in for-est machine hydraulic drives. The result of the study will be a program for controlling the operation of the forwarder manipulator hydraulic devices through control signals generated by the PID controller. When selecting the optimal PID controller coefficients to optimize the operation of the automatic pressure control system, the signals will monitor, regu-late and change the deviations in the system characteristics, which increases the reliability of the hydraulic manipula-tor. There are various approaches to modeling and developing intelligent hydraulic systems, which can lead to difficul-ties in the compatibility and interaction of various components and devices. Very often, scientists rely on MATLAB-type programmers in modeling processes. But the use of the controller itself and its software in PID control of the pa-rameters of the hydraulic drive of a forest machine remains practically unexplored, so this topic is relevant. In this study, the possibility of applicability of PID control of the state of the system parameters (pressure through the opening of the throttle section) through the PLC controller program OWEN160 CODESYS V2.3 allows to reduce system oscilla-tions and increase the speed of error correction in the hydraulic system, bringing the current pressure values to the set-point, which increases the reliability of the forest machine.
hydraulic drive, control program CODESYS V2.3, neural network block, reliability, PID controller coefficients
1. Zishan F., Montoya, O.D.; Giral-Ramírez, D.A.;Molina-Cabrera, A. Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm. Electronics. 2022; 11: 3886. https://doi.org/10.3390/electronics11233886.
2. Barakat M. Optimal design of fuzzy-PID controller for automatic generation control of multi-source intercon-nected power system. Neural Comput & Applic. 2022; 34: 18859–18880. DOI: https://doi.org/10.1007/s00521-022-07470-4.
3. Chotikunnan P., Chotikunnan R. Dual design PID controller for robotic manipulator application // Journal of Ro-botics and Control (JRC). 2023; 4 (1): 23-34. DOI: : https://doi.org/10.18196/jrc.v4i1.16990.
4. Almodaresi E., Bozorg M. Stable regions in the space of PID controller coefficients. IET Control Theory & Appli-cations. 2017; 11; 10: 1642-1647. DOI: https://doi.org/10.1049/iet-cta.2016.0685.
5. Coskun M.Y., İtik M. Intelligent PID control of an industrial electro-hydraulic system. ISA transac-tions. 2023; 139: 484–498. DOI: https://doi.org/10.1016/j.isatra.2023.04.005.
6. Posmet'ev V.I., Nikonov V. O., Posmet'ev V.V., Zelikov V.A., Kolodii P.V. Komp'yuternoe modelirovanie rekuper-ativnogo krivoshipnogo mekhanizma povorota kolonny manipulyatora lesovoznogo avtopoezda. [Computa-tional modeling of a recuperative ship mechanism for turning a column manipulator of a timber truck]. Leso-tekhnicheskii zhurnal [Forestry journal]. 2023; 13; 2 (50): 158–178. (In Russ.). DOI: https://doi.org/10.34220/issn.2222-7962/2023.2/9. URL: http://lestehjournal.ru/journal/2023/no-2-50/kompyuternoe-modelirovanie-rekuperativnogo-krivoshipnogo-mehanizma-povorota
7. Palkin G.A., Gaisin A.F. Issledovanie optimal'nogo metoda upravleniya elektroprivodami nasosov pervogo pod"ema, ekspluatiruemykh v usloviyakh otritsatel'nykh temperatur [Study of the optimal method of controlling electric drives of first-stage pumps operated under subzero temperature conditions]. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki [News of higher educational institutions. Problems of energy.]. 2021; 23(3): 194–208. (In Russ.). DOI: https://doi.org/10.30724/1998-9903-2021-23-3-194-208. URL: https://cyberleninka.ru/article/n/issledovanie-optimalnogo-metoda-upravleniya-elektroprivodami-nasosov-pervogo-podema-ekspluatiruemyh-v-usloviyah-otritsatelnyh
8. Bahanovich G. i drugie. Jelektronnoe upravlenie toplivopodachej dizel'nogo dvigatelja na osnove programmnogo PID-regulirovanija [Electronic control of fuel supply of diesel engine based on software PID regulation]. Nauka i tehnika [Science and Technology]. 2017; 1: 28-37. (In Russ.). DOI: https://doi.org/10.21122/2227-1031-2017-16-1-28-37. URL: https://cyberleninka.ru/article/n/elektronnoe-upravlenie-toplivopodachey-dizelnogo-dvigatelya-na-osnove-programmnogo-pid-regulirovaniya.
9. Balobanov E.N., Emel'janova M.S. Sekcija 3 [Section 3]. Pribory v promyshlennosti, nerazrushajushhem kontro-le, zdravoohranenii i jekologii [Devices in industry, non-destructive testing, healthcare and ecology]. Organi-zacionnyj komitet konferencii [Conference Organizing Committee]. 2022; 166. (In Russ.). URL: http://pribor21.istu.ru/doc/2021/PribXXI-2021_Prog_RU.pdf?ysclid=m6xn0encez248277063.
10. Kulikova I.V. Modelirovanie sinteza nechetkih reguljatorov tipa Takagi – Sugeno – Kanga v nekotoryh sistemah upravlenija [Modeling the synthesis of fuzzy controllers of the Takagi-Suzeno-Kang type in some control sys-tems]. Vestnik Tjumenskogo gosudarstvennogo universiteta [Bulletin of Tyumen State University]. Fiziko-matematicheskoe modelirovanie [Physical and mathematical modeling]. Neft', gaz, jenergetika [Oil, gas, energy]. 2021; 7; 2 (26): 147–169. (In Russ.). DOI: https://doi.org/10.21684/2411-7978-2021-7-2-147-169. URL: https://vestnik.utmn.ru/energy/vypuski/2021-tom-7/2_26/1064300/
11. Kozhuhova A.V., Nevzorova M.Ju. Proektirovanie stenda dlja issledovanija chastotnogo regulirovanija obem-nogo nasosa [Design of a test bench for studying frequency control of a volumetric pump]. Simvol nauki [Symbol of science]. 2016; 3 (3): 53–56. (In Russ.). DOI: https://doi.org/10.17816/2074-0530-66853. URL: http://pribor21.istu.ru/doc/2021/PribXXI-2021_Prog_RU.pdf?ysclid=m6vqyos2zz576468933
12. Truhanov K.A. Cifrovoj PID–reguljator dlja pnevmo- i gidrosistem. Izvestija Moskovskogo gosudarstvennogo tehnicheskogo universiteta MAMI [Digital PID controller for pneumatic and hydraulic systems. News of the Mos-cow State Technical University MAMI]. 2018; 3: 65–75. (In Russ). DOI: https://doi.org/10.17816/2074-0530-66853. URL: https://elibrary.ru/download/elibrary_35670015_10323769.pdf
13. Prokop'ev A.P., Ivanchura V.I., Emel'janov R.T. Identifikacija nelinejnoj sistemy upravlenija s PID-reguljatorom [Identification of a nonlinear control system with a PID controller]. System identification and control problems. Sicpro'15. 2015; 387–396. (In Russ.) URL: https://elibrary.ru/download/elibrary_23316545_72934853.pdf.
14. Aljohin M.V., Petrosjan A.E., Shahovcev K.V. Promyshlennye manipuljacionnye roboty .Proryvnye nauchnye issledovanija kak dvigatel' nauki [Industrial manipulation robots. Breakthrough scientific research as the engine of science]. 2017; 117–119. (In Russ). URL: https://elibrary.ru/download/elibrary_30663663_23533456.pdf.
15. Gulaj V.A., Dubovik A.V., Bogdanova E.A. Intellektual'nye, sensornye i mehatronnye sistemy [Intelligent, sensory and mechatronic systems]. 2024 (In Russ). URL: https://rep.bntu.by/bitstream/handle/data/147397/Intellektualnye_sensornye_i_mekhatronnye_sistemy.pdf?sequence=1&isAllowed=y.
16. Filo G. Artificial intelligence methods in hydraulic system design //Energies. 2023; 16(8): 3320. DOI: http:// doi.org/10.3390/en16083320.
17. Mirzaliev S.A., Sharipov K.L. Modelirovanie funkcii gidroprivoda programmoj " LMS AMESIM"[ Modeling of hydraulic drive functions using the LMS AMESIM program.]. Materialy V Mezhdunarodnoj nauchno-prakticheskoj konferencii " Metody i tehnologii v selekcii rastenij i rastenievodstve" [Proceedings of the Interna-tional Scientific and Practical Conference "Methods and Technologies in Plant Breeding and Plant Growing"]. 2019; 308-311. (In Russ). URL: https://ejournal.tsue.uz/index.php/archive/article/view/3137.
18. Pastuhov I.S., Celishhev V.A. Gidrosistema valochno-paketirujushhej mashiny (harvestera), perspektivy razvitija. Gidravlicheskie mashiny, gidroprivody i gidropnevmoavtomatika [Hydraulic system of feller-buncher (harvester), development prospects. Hydraulic machines, hydraulic drives and hydropneumatic automation]. 2020; 201-206. (In Russ). URL: https://elibrary.ru/download/elibrary_44348266_38594338.pdf.
19. Santalov A.A. Nejrosetevaja nastrojka adaptivnogo PID–reguljatora moshhnosti gidroagregata. Vestnik Ul'janovskogo gosudarstvennogo tehnicheskogo universiteta [Neural network tuning of adaptive PID-controller of hydroelectric power unit. Bulletin of Ulyanovsk State Technical University]. 2021; 3 (95): 30–34. (In Russ). URL: https://cyberleninka.ru/article/n/neyrosetevaya-nastroyka-adaptivnogo-pid-regulyatora-moschnosti-gidroagregata.
20. Frjanov V.N., Pavlova L.D. Imitacionnoe modelirovanie i opredelenie optimal'noj traektorii dvizhenija ispolnitel'nogo organa robotizirovannogo vyemochnogo agregata [Simulation modeling and determination of the optimal trajectory of movement of the executive body of a robotic mining unit]. Fundamental'nye i prikladnye voprosy gornyh nauk [Fundamental and applied issues of mining sciences]. 2016; 3(2): 202–210. (In Russ). URL: http://www.jfams.ru/index.php/JFAMS/article/view/238.
21. Hinikadze T.A., Rybak A.T., Popikov P.I. Modelirovanie gidravlicheskoj sistemy ustrojstva s samoadaptaciej po silovym i kinematicheskim parametram na rabochem organe [Modeling of a hydraulic system of a device with self-adaptation according to power and kinematic parameters on the working element]. Advanced Engineering Research (Rostov-on-Don). 2021; 21(1): 55-61. (In Russ). DOI: https://doi.org/10.23947/2687-1653-2021-21-1-55-61. URL: https://cyberleninka.ru/article/n/modelirovanie-gidravlicheskoy-sistemy-ustroystva-s-samoadaptatsiey-po-silovym-i-kinematicheskim-parametram-na-rabochem-organe.
22. Jakovlev A.Ju., Krasnaja A.A., Medvedev S.N. Primenenie Q-obuchenija dlja intellektual'nogo vyvoda strely ma-nipuljatora v zadannoe polozhenie [Using K-learning to intelligently position a manipulator boom]. Aktual'nye problemy prikladnoj matematiki, informatiki i mehaniki [Current issues in applied mathematics, computer sci-ence and mechanics]. 2021; 1639–1647. (In Russ). URL: https://elibrary.ru/download/elibrary_46235784_68390633.pdf.
23. Thai N.H. et al. Trajectory tracking control for differential-drive mobile robot by a variable parameter PID con-troller. International Journal of Mechanical Engineering and Robotics Research. 2022; 11(8): 614–621. DOI: http://doi.org/10.18178/ijmerr.11.8.614-621.
24. Yang X. et al. Adaptive fuzzy PID control of high-speed on-off valve for position control system used in water hydraulic manipulators. Fusion Engineering and Design. 2024; 203: 114437. DOI: https://doi.org/10.1016/j.fusengdes.2024.114437.
25. Hropakov D.I. Modelirovanie mnogodvigatel'nyh gidrosistem v programmnoj srede Matlab-Simulink [Modeling of multi-engine hydraulic systems in the Matlab-Citylink software environment]. Issledovanija i razrabotki v ob-lasti mashinostroenija, jenergetiki i upravlenija: materialy XVIII Mezhdunar. nauchno-tehnicheskoj konferencii studentov, aspirantov i molodyh uchenyh [Research and development in the field of mechanical engineering, en-ergy engineering and management: materials of the XVIII International scientific-technical conference of stu-dents, postgraduates and young scientists]. Gomel': Gomelevskij gosudarstvennyj tehnologicheskij universitet [Gomel State Technological University], 2018; 85–88. (In Russ). URL: https://elib.gstu.by/handle/220612/19742.
26. Goljakevich S.A., Goronovskij A.R., Mohov S.P. Rezul'taty imitacionnogo modelirovanija raboty gidravlicheskoj sistemy forvardera v MatLab/Simulink/Simscape [Results of simulation modeling of the forwarder hydraulic sys-tem operation in MatLab/Cimulink/Simscape]. Serija 1 [Episode 1]: Lesnoe hozjajstvo, prirodopol'zovanie i pere-rabotka vozobnovljaemyh resursov [Forestry, nature management and processing of renewable resources]. Minsk: Trudy Belorusskogo gosudarstvennogo tehnologicheskogo universiteta [Proceedings of the Belarusian State Technological University]. 2019; 1 (216):126–131. (In Russ). URL: https://cyberleninka.ru/article/n/rezultaty-imitatsionnogo-modelirovaniya-raboty-gidravlicheskoy-sistemy-forvardera-v-matlab-simulink-simscape.
27. Popad'in A.N. Avtomatizirovannaja nastrojka PID-reguljatora dlja upravlenija sledjashhim privodom s ispol'zovaniem programmnogo paketa MATLAB SIMULINK [Automated tuning of PID controller for control of servo drive using MATLAB SIMULINK software package]. Morskoj vestnik [Marine Herald]. 2019; 3(71): 93–96. (In Russ). URL: https://elibrary.ru/download/elibrary_39282319_87700478.pdf.
28. Izmeriteli–reguljatory. Glossarij (Jelektronnyj resurs) [Measuring instruments-regulators. Glossary (Electronic re-source). (In Russ)]. URL: https://kurl.ru/xqpoy



