from 01.01.2024 until now
Moscow, Russian Federation
Schmidt Institute of Physics of the Earth, RAS
Geophysical Center RAS
Moscow, Russian Federation
Nagoya, Japan
Paratunka, Kamchatka, Russian Federation
Yakutsk, Russian Federation
We have analyzed electromagnetic ion-cyclotron oscillations of the Pc1 range (~1 Hz) recorded during the recovery phase of the March 25, 2023 magnetic storm at the network of ground stations in the Far East and at low-orbit SWARM satellites passing over the stations. The collected data made it possible to trace propagation of Pc1 waves through the ionosphere to Earth’s surface and along the ionosphere. While long-term (~1 hour) narrowband pulsations were observed at ground stations, satellites recorded only a short (~40 s) burst of transverse oscillations. Estimated coherence of signals between close SWARM-A and -C satellites, separated by ~1° longitude, gives a transverse scale of the wave packet in the ionosphere equal to ~90 km. The long duration of pulsations at ground stations is caused by waveguide propagation of signals along the ionosphere due to which the station “collects” signals from a large magnetospheric region. The presence of waveguide propagation is confirmed by the orientation of the polarization ellipse of ground-based Pc1 pulsations relative to the site of injection of waves into the ionosphere. It is hypothesized that ion-cyclotron instability develops in the form of localized and short-lived bursts, but the mechanism of such a regime remains unclear.
Pc1 pulsations, electromagnetic ion-cyclotron waves, SWARM satellites
1. Anderson B.J., Erlandson R.E., Zanetti L.J. A statistical study of Pc1-2 magnetic pulsations in the equatorial magnetosphere: 1. Equatorial occurrence distributions. J. Geophys. Res. 1992, vol. 97, pp. 3075–3088. DOI:https://doi.org/10.1029/91ja02697.
2. Arcimovich L.A., Sagdeev R.Z. Fizika plazmy dlya fizikov [Physics plasma for physicists]. Moscow, Atomizdat Publ., 1979, 313 p. (In Russian).
3. Demekhov A.G. Recent progress in understanding Pc1 pearl formation. J. Atmos. Solar-Terr. Phys. 2007, vol. 69, no. 14, pp. 1609–1622. DOI:https://doi.org/10.1016/j.jastp.2007.01.014.
4. Dmitrienko I.S., Mazur V.A. The spatial structure of quasicircular Alfven modes of waveguide at the plasmapause — Interpretation of Pc1 pulsations. Planet. Space Sci. 1992, vol. 40, iss. 1, pp. 139–148. DOI:https://doi.org/10.1016/0032-0633(92)90156-i.
5. Engebretson M.J., Peterson W.K., Posch J.L., Klatt M.R., Anderson B.J., Russell C.T., et al. Observations of two types of Pc1-2 pulsations in the outer dayside magnetosphere. J. Geophys. Res. 2002, vol. 107, iss. A12, p. 1451. DOI:https://doi.org/10.1029/2001JA000198.
6. Engebretson M.J., Posch J.L., Westerman A.M., Otto N.J., Slavin J.A., Le G., et al. Temporal and spatial characteristics of Pc1 waves observed by ST5. J. Geophys. Res. 2008, vol. 113, A07206. DOI:https://doi.org/10.1029/2008JA013145.
7. Erlandson R.E., Zanetti L.J., Potemra T.A., Block L.P., Holmgren G. Viking magnetic and electric field observations of Pc1 waves at high latitudes. J. Geophys. Res. 1990, vol. 95, iss. A5, pp. 5941–5955. DOI:https://doi.org/10.1029/ja095ia05p05941.
8. Fedorov E.N., Pilipenko V.A., Engebretson M.J., Hartinger M.D. Transmission of a magnetospheric Pc1 wave beam through the ionosphere to the ground. J. Geophys. Res. 2018, vol. 123, iss. 5, pp. 3965–3982. DOI:https://doi.org/10.1029/2018JA 0253381–18.
9. Fujita S., Tamao T. Duct propagation of hydromagnetic waves in the upper ionosphere. 1. Electromagnetic field disturbances in high latitudes associated with localized incidence of a shear Alfven wave. J. Geophys. Res. 1988, vol. 93, iss. A12, pp. 14665–14673. DOI:https://doi.org/10.1029/ja093ia12p14665.
10. Gary S.P., Thomsen M.F., Yin L., Winske D. Electromagnetic proton cyclotron instability: Interactions with magnetospheric protons. J. Geophys. Res. 1995, vol. 100, no. A11, pp. 21961–21972. DOI:https://doi.org/10.1029/95ja01403.
11. Grinsted A., Moore J.C., Jevrejeva S. Application of cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics. 2004, vol. 11, no. 5/6, pp. 561–566. DOI:https://doi.org/10.5194/npg-11-561-2004.
12. Guglielmi A.V. Cyclotron instability in the magnetosphere considering the refraction of rising waves. Geomagnetism and Aeronomy. 1970, vol. 10, no. 4, pp. 721–724.
13. Guglielmi A.V. MGD-volny v okolozemnoj plazme [MHD waves in near-Earth plasma]. Moscow, Nauka Publ., 1979, 139 p. (In Russian).
14. Guglielmi A.V. Three unsolved problems in the physics of magnetospheric waves Pc1. Geofizicheskie Issledovanija [Geophysical Research], 2015, vol. 16, no. 3, pp. 63–72. (In Russian).
15. Guglielmi A.V., Potapov A.S. Problems of the Pc1 magnetospheric wave theory. A review. Solar-Terr. Phys. 2019, vol. 5, iss. 3, pp. 87–92. DOI:https://doi.org/10.12737/stp-53201910.
16. Guglielmi A.V., Potapov A.S., Russell C.T. The ion cyclotron resonator in the magnetosphere. JETP Lett. 2000, vol. 72, no. 6, pp. 298–300. DOI:https://doi.org/10.1134/1.1328441.
17. Hansen H.J., Fraser B.J., Menk F.W., Hu Y.-D., Newell P.T., Meng C.-I., Morris R.J. High-latitude Pc 1 bursts arising in the dayside boundary layer region. J. Geophys. Res. 1992, vol. 97, no. A4, pp. 3993–4008. DOI:https://doi.org/10.1029/91ja01456.
18. Horne R.B., Thorne R.M. On the preferred source location for the convective amplification of ion cyclotron waves. J. Geophys. Res. 1993, vol. 98, no. A6, pp. 9233–9248. DOI:https://doi.org/10.1029/92ja02972.
19. Horne R.B., Thorne R.M. Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. J. Geophys. Res. 1994, vol. 99, no. A9, pp. 17259–17273. DOI:https://doi.org/10.1029/94ja01259.
20. Hu Y.D., Fraser B.J. Electromagnetic ion cyclotron wave amplification and source regions in the magnetosphere. J. Geophys. Res. 1994, vol. 99, no. A1, pp. 263–272. DOI:https://doi.org/10.1029/93ja01897.
21. Johnson J.R., Cheng C.Z. Can ion cyclotron waves propagate to the ground? Geophys. Res. Lett. 1999, vol. 26, no. 6, pp. 671–674. DOI:https://doi.org/10.1029/1999gl900074.
22. Kangas J., Guglielmi A., Pokhotelov O. Morphology and physics of short-period geomagnetic pulsations. Space. Sci. Rev. 1998, vol. 83, no. 3/4, pp. 435–512. DOI:https://doi.org/10.1023/A:100 5063911643.
23. Keika K., Takahashi K., Ukhorskiy A.Y., Miyoshi Y. Global characteristics of electromagnetic ion cyclotron waves: Occurrence rate and its storm dependence, J. Geophys. Res. 2013, vol. 118, no. 7, pp. 4135–4150, DOI:https://doi.org/10.1002/jgra.50385.
24. Kennel C.F., Petchek H.E. Limit on stably trapped particle fluxes. J. Geophys. Res. 1966, vol. 71, no. 1, pp. 1–28. DOI:https://doi.org/10.1029/jz071i001p00001.
25. Kim H., Lessard M.R., Engebretson M.J., Lühr H. Ducting characteristics of Pc1 waves at high latitudes on the ground and in space. J. Geophys. Res. 2010, vol. 115, A09310. DOI:https://doi.org/10.1029/2010JA015323.
26. Leonovich A.S. Propagation of geomagnetic pulsations in magnetospheric ducts. Geomagnetism and Aeronomy. 1984, vol. 24, no. 1, p. 94.
27. Leonovich A.S., Mazur V.A., Senatorov V.N An Alfven waveguide. J. Experimental and Theoretical Phys. 1983, vol. 85, pp. 141–145. (In Russian).
28. Liu J., Shiokawa K., Oyama S.-I., Otsuka, Y., Jun, C.-W., Nosé, M., et al. A statistical study of longitudinal extent of Pc1 pulsations using seven PWING ground stations at subauroral latitudes. J. Geophys. Res. 2023, vol. 128, no. 1, 2021JA029987. DOI:https://doi.org/10.1029/2021JA029987.
29. Matsuda S., Miyoshi Y., Kasahara Y., Blum L., Colpitts C., Asamura K., et al. Multipoint measurement of fine-structured EMIC waves by Arase, Van Allen Probe A, and ground stations. Geophys. Res. Lett. 2021, vol. 48, e2021GL096488. DOI:https://doi.org/10.1029/2021GL096488.
30. Mikhailova O.S., Klimushkin D.Yu., Mager P.N. Pc1-pulsations: the parallel structure in the magnetosphere plasma with admixture of the heavy ions. Adv. Astron. Space Phys. 2012, vol. 2, pp. 88–90.
31. Mikhailova O.S. The spatial structure of ULF waves in the equatorial resonator localized at the plasmapause with the admixture of the heavy ions. J. Atmos. Solar-Terr. Phys. 2014, vol. 108, pp. 10–16. DOI:https://doi.org/10.1016/j.jastp.2013.12.007.
32. Mikhailova O.S., Klimushkin D.Yu., Mager P.N. The current state of the theory of Pc1 range ULF pulsations in magnetospheric plasma with heavy ions: A review. Solar-Terr. Phys. 2022, vol. 8, iss. 1, pp. 3–18. DOI:https://doi.org/10.12737/stp-81202201.
33. Miyoshi Y., Sakaguchi K., Shiokawa K., Evans D., Albert J., Connors M., Jordanova V. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space. Geophys. Res. Lett. 2008, vol. 35, L23101. DOI:https://doi.org/10.1029/2008GL035727.
34. Mursula K. Satellite observations of Pc1 pearl waves: The changing paradigm. J. Atmos. Solar-Terr. Phys. 2007, vol. 69, pp. 1623–1634. DOI:https://doi.org/10.1016/j.jastp.2007.02.013.
35. Pilipenko V.A., Polozova T.L., Engebretson M. Space-time structure of ion-cyclotron waves in the topside ionosphere as observed onboard the ST-5 satellites. Cosmic. Res. 2012, vol. 50, no. 5, pp. 329–329. DOI:https://doi.org/10.1134/S0010952512050048.
36. Rauch J.L., Roux A. Ray tracing of ULF waves in a multi-component magnetospheric plasma: consequences for the generation mechanism of ion cyclotron waves. J. Geophys. Res. 1982, vol. 87, no. A10, pp. 8191–8198. DOI:https://doi.org/10.1029/JA087iA10p08191.
37. Sakaguchi K., Shiokawa K., Miyoshi Y., Otsuka Y., Ogawa T., Asamura K., Connors M. Simultaneous appearance of isolated auroral arcs and Pc1 geomagnetic pulsations at subauroral latitudes. J. Geophys. Res. 2008, vol. 113, A05201. DOI:https://doi.org/10.1029/2007JA012888.
38. Shiokawa K., Katoh Y., Hamaguchi Y., Yamamoto Y., Adachi T., Ozaki M., et al. Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth, Planets and Space. 2017, vol. 69, no. 1, article number 160. DOI:https://doi.org/10.1186/s40623-017-0745-9.
39. Trakhtengerts V.Y., Demekhov A.C. Generation of Pc1 pulsations in the regime of backward wave oscillator. J. Atmos. Solar-Terr. Phys. 2007, vol. 69, pp. 1651–1656. DOI:https://doi.org/10.1016/j.jastp.2007.02.009.
40. Trakhtengerts V.Y., Rycroft M.J. Whistler and Alfvén mode cyclotron masers in space. Cambridge University Press, 2011, 354 p.
41. Usanova M.E., Mann I.R., Rae I.J., Kale Z.C., Angelopoulos V., Bonnell J.W., et al. Multipoint observations of magnetospheric compression-related EMIC Pc1 waves by THEMIS and CARISMA. Geophys. Res. Lett. 2008, vol. 35, L17S25. DOI:https://doi.org/10.1029/2008GL034458.
42. Wandzura S., Coroniti F.V. Nonconvective ion cyclotron instability. Planet. Space Sci. 1975, vol. 23, pp. 123–131. DOI:https://doi.org/10.1016/0032-0633(75)90073-2.
43. Yahnina T.A., Frey H.U., Bösinger T., Yahnin A.G. Evidence for subauroral proton flashes on the dayside as the result of the ion cyclotron interaction. J. Geophys. Res. 2008, vol. 113, A07209. DOI:https://doi.org/10.1029/2008JA013099.
44. Yahnina T.A., Yahnin A.G., Kangas J., Manninen J. Proton precipitation related to Pcl pulsations. Geophys. Res. Lett. 2000, vol. 27, no. 21, pp. 3575–3578. DOI:https://doi.org/10.1029/2000gl003763.
45. Yahnin A.G., Yahnina T.A., Frey H.U. Subauroral proton spots visualize the Pc1 source. J. Geophys. Res. 2007, vol. 112, A10223. DOI:https://doi.org/10.1029/2007JA012501.
46. Yin Z.-F., Zhou X.-Z., Hu Z.-J., Yue C., Zong Q.G., Liu Z.Y., et al. Westward excursion of Pc1/EMIC waves and their source protons: Paradoxical observations from ground and space. J. Geophys. Res. 2024, vol. 129, e2023JA032317. DOI:https://doi.org/10.1029/e2023JA032317.
47. URL: https://stdb2.isee.nagoya-u.ac.jp/magne/magne_stations.html (accessed March 20, 2025).
48. URL: https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Swarm (accessed March 20, 2025).
49. URL: https://sscweb.gsfc.nasa.gov (accessed March 20, 2025).
50. URL: https://pycwt.readthedocs.io/en/latest/ (accessed March 20, 2025).




