STUDY AND MODELING OF MECHANISMS OF CHOLINESTERASIS REACTIONS IN ORDER TO IMPROVE THEIR CATALYTIC PROPERTIES IN THE NEUTRALIZATION REACTIONS OF ORGANOPHOSPHORUS COMPOUNDS
Abstract and keywords
Abstract (English):
“Biocleaners” or “bioscavengers” are biological objects (enzymes, catalytic antibodies) that are capable of binding and/or hydrolyzing organophosphorus compounds (OPC). Their use seems to be the most effective alternative to traditional antidotes to neutralize or detoxify OPC. The introduction of bioscavengers allows neutralizing toxicant molecules in the bloodstream before they reach their biological targets, thereby providing protection against poisoning. Bioscavengers of the first-generation neutralized OPC molecules by stoichiometrically binding to them. The safety and efficacy of human butyrylcholinesterase (BChE) for protecting against OPC poisoning has been shown. However, the stoichiometric neutralization of OPC requires the introduction of a huge amount of expensive biopharmaceuticals. Catalytic bioscavengers that hydrolytically neutralize OPC were introduced at a much lower dose to achieve the same degree of effectiveness. The most effective catalytic bioscavengers are enzymes. The most promising enzymes are artificial mammalian paraoxonase mutants and bacterial phosphotriesterases. However, studies of other enzymes, such as prolidases, oxidases, artificial mutants of cholinesterases and carboxyl esterases and catalytic antibodies are actively ongoing. Since OPC are pseudosubstrates of cholinesterases (ChEs), a detailed description of the mechanisms of inhibition, dealkylation, and spontaneous reactivation of phosphorylated ChEs is critical for the development of ChEs mutants with a high rate of hydrolysis of OPC. The review presents an analysis of different views on the mechanisms of interaction of ChEs with OPC, discusses the possible directions of creating effective catalytic biological traps based on BChE and changes in their mechanism of action as compared to the native enzyme. A separate section is devoted to the effect of mutations, both polymorphic and artificial, on the stability of the protein molecule of BChE.

Keywords:
cholinesterases, computer modeling, reaction mechanism
References

1. Aslanli A.G., Stepanov N.A., Senko O.V., Maslova O.V., Lyagin I.V., Efremenko E.N. The hexahistidine containing organophosphorus hydrolase enzyme and bacterial cellulose based functional materials. In IOP Conference Series: Materials Science and Engineering, 2019, 525 (1). P. 012005. IOP Publishing.

2. Aslanly A.G., Maslova O.V., Sen'ko O.V., Efremenko E.N. Polifunkcional'nyy fermentnyy biopreparat na osnove geksagistidinsoderzhaschey organofosfatgidrolazy, deystvuyuschiy protiv bakterioza rasteniy. Vestnik biotehnologii i fiziko-himicheskoy biologii imeni Yu.A. Ovchinnikova, 2017, 13. S. 13-17.

3. Aslanli A., Lyagin I., Efremenko E. Charges' interaction in polyelectrolyte (nano)complexing of His6-OPH with peptides: unpredictable results due to imperfect or useless concept? Int. J. Biol. Macromol., 2019, 140. Pp. 368–376.

4. Boroduleva A.Y., Wu J., Yang Q., Li H., Zhang Q., Li P., Eremin. S.A. Development of fluorescence polarization immunoassays for parallel detection of pesticides carbaryl and triazophos in wheat grains. Anal. Methods, 2017, 9 (48). Pp. 6814–6822.

5. Bravaya K.B., Bochenkova A.V., Grigorenko B.L., Topol I.A., Burt S.K., Nemukhin A.V. Molecular modeling the reaction mechanism of serine-carboxyl peptidases. J. Chem. Theory Comput., 2006, 2. Pp. 1168–1175.

6. Carletti E.N., Colletier J.-P., Dupeux F., Trovaslet M., Masson P., Nachon F. Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation. J Med Chem, 2010, 53. Pp. 4002–4008.

7. Grigorenko B.L., Novichkova D.A., Lushchekina S.V., Zueva I.V., Schopfer L.M., Nemukhin A.V., Varfolomeev S.D., Lockridge O., Masson P. Computer-designed active human butyrylcholinesterase double mutant with a new catalytic triad, Chem.-Biol. Interact., 2019, 306. Pp. 138–146.

8. Gudkov D.A., Lyagin I.V., Efremenko E.N., Kabanov A.V. Effect of dimerization on the catalytic properties of native and chimeric organophosphorus hydrolase determined by molecular modeling of the enzyme structure. Russian Chemical Bulletin, 2012, 1 (2), Pp. 449–455.

9. Gudkov D.A., Lyagin I.V., Verkhusha V.V., Efremenko E.N. Hybrid proteins with organophosphorus hydrolase activity and fluorescence of deGFP4 protein. Moscow University Chemistry Bulletin, 2011, 66 (2). Pp. 92–98.

10. Efremenko E., Lyagin I., Gudkov D., Varfolomeyev S. Immobilized biocatalysts for detoxification of neurotoxic organophosphorous compounds. Biocatalysis and Biotransformation, 2007, 25 (2–4). Pp. 359–364.

11. Efremenko E.N., Sen'ko O.V., Kuc V.V., Alenina K.A., Holstov A.V., Ismailov A.D. Lyuminescentnyy biokatalizator dlya opredeleniya toksikantov. Patent RF na izobretenie № 2394910, 2010.

12. Efremenko E.N., Zav'yalova N.V., Lyagin I.V., Sen'ko O.V., Gudkov D.A., Aksenov A. V., Stepanov N.A., Sirotkina M.S., Spiricheva O.V., Ivanov R.V., Lozinskiy V.I., Varfolomeev S.D., Kondrat'ev V.B., Holstov V.I. Sposob biorazlozheniya fosfororganicheskih soedineniy v sostave reakcionnyh mass, poluchaemyh posle himicheskogo unichtozheniya veschestva tipa VX. Patent RF na izobretenie № 2408724, 2009.

13. Eremenko A.V., Prokopkina T.A., Kasatkin V.E., Osipova T.A., Kurochkin I.N. Planarnye tiol-chuvstvitel'nye sensornye elementy dlya opredeleniya aktivnosti butirilholine¬sterazy i analiza ee ingibitorov. Vestnik Moskovskogo Universiteta. Seriya 2. Himiya, 2014, 55 (3). S. 174–179.

14. Efremenko E.N., Lyagin I.V., Klyachko N.L., Bronich T., Zavyalova N.V., Jiang Y., Kabanov A.V. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. J. Control. Release, 2017, 247. Pp. 175–181.

15. Efremenko E.N., Lyagin I.V., Zav'yalov V.V., Zav'yalova N.V., Holstov V.I., Yankovskaya A.A. Razryv S-R svyazi v fosfonatah pod deystviem fermentnyh biokatalizatorov. Teoreticheskaya i prikladnaya ekologiya, 2015, 3. C. 47–54

16. Efremenko E.N., Lyagin I.V., Gudkov D.A., Stepanov N.A., Sen'ko O.V., Maslova O.V., Kovalev D.A., Zav'yalova N.V., Holstov V.I., Yankovskaya A.A. Kombinirovannoe primenenie fermentnogo i bakterial'nogo biokatalizatorov v processah biodestrukcii FOV i produktov ih razlozheniya. Teoreticheskaya i prikladnaya ekologiya, 2015, (3). S. 35–39.

17. Eremenko A.V., Dontsova E.A., Nazarov A.P., Evtushenko E.G., Amitonov S.V., Savilov S.V., Martynova L.F., Lunin V.V., Kurochkin I.N. Manganese Dioxide Nanostructures as a Nov¬el Electrochemical Mediator for Thiol Sensors. Electroanalysis, 2012, 3. P. 573.

18. Ermakova I.T., Shushkova T.V., Sviridov A.V., Zelenkova N.F., Vinokurova N.G., Baskunov B.P., Leontievsky A.A. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. Arch. Microbiol., 2017, 199(5). Pp. 665–675.

19. Filimonov I.V., Yankovskaya A.A., Kuzhelko S.V., Zav'yalov V.V., Zav'yalova N.V., Golipad A.N., Kolesnikov D.P., Kovtun V.A., Holstov V.I., Lyagin I.V., Efremenko E.N. Issledovaniya v sfere perspektivnogo ispol'zovaniya himiko-biologicheskih i medicinskih biokataliticheskih tehnologiy v interesah Vooruzhennyh Sil. Vestnik voysk RHB zaschity, 2018, 2 (2). S. 18–50.

20. Hua X., Eremin S.A., Liu F., Wang M. Antibody Developments and Immunoassays for Organophosphorus Chemicals: A Review. Current Organic Chemistry, 2017, 21 (26). Pp. 2640–2652.

21. Liu Y., Liu R., Boroduleva A., Eremin S., Guo Y., Zhu G. A highly specific and sensitive fluorescence polarization immunoassay for the rapid detection of triazophos residue in agricultural products. Anal. Methods, 2016, 8 (36). Pp. 6636–6644.

22. Lyagin I.V., Efremenko E.N., Varfolomeev S.D. Fermentnye biosensory dlya opredeleniya pesticidov. Uspehi himii, 2017, 86. Pp. 339–355.

23. Lyagin I., Efremenko E. Theoretical evaluation of suspected enzymatic hydrolysis of Novichok agents. Catal. Commun., 2019, 120. Pp. 91–94.

24. Lyagin I.V., Andrianova M.S., Efremenko E.N. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase. Appl. Microbiol. Biotechnol., 2016, 100. Pp. 5829–5838.

25. Lyagin I., Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules, 2019, 24. e2362, doi: 10.3390/molecules24132362.

26. Lushchekina S.V., Schopfer L.M., Grigorenko B.L., Nemukhin A.V., Varfolomeev S.D., Lockridge O., Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents, Front. Pharmacol., 2018, 9. P. 211.

27. Makhaeva G.F., Rudakova E.V., Serebryakova O.G., Aksinenko A.Y., Lushchekina S.V., Bachurin S.O., Richardson R.J. Esterase profiles of organophosphorus compounds in vitro predict their behavior in vivo, Chem.-Biol. Interact., 2016, 259 (Pt B). Pp. 332–342.

28. Maslova O.V., Stepanov N.A., Grigoryeva A.I., Bruyako M.G., Efremenko E.N. New effective His6-OPH-containing mineral carriers pretreated by low-temperature plasma for destruction of organophosphates in different types of soil. International Journal of Pharmacy & Technology, 2016, 8. Pp. 27317–27333.

29. Maslova O., Aslanli A., Stepanov N., Lyagin I., Efremenko E. Catalytic characteristics of new antibacterials based on hexahistidine-containing organophosphorus hydrolase. Catalysts, 2017, 7 (9). P. 271.

30. Maslova O.V., Senko O.V., Stepanov N.A., Aslanli A.G.Q., Efremenko E.N. His6-OPH and its stabilized forms combating quorum sensing molecules of gram-negative bacteria in combination with antibiotics. Jundishapur J. Nat. Pharm. Prod., 2017, 12 (3). P. e63649.

31. Maslova O.V., Aslanly A.G., Sen'ko O.V., Efremenko E.N. Vozmozhnosti snizheniya minimal'nyh ingibiruyuschih koncentraciy puromicina i ceftiofura pri ih sochetanii s biopreparatami na osnove His6-OPH. Vestnik Moskovskogo universiteta. Seriya 2 Himiya, 2018, 59. S. 439–444.

32. Masson P., Nachon F., Broomfield C.A. et al. A collaborative endeavor to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters. Chem. Biol. Interact., 175 (2008). Pp. 273–280.

33. Masson P., Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning, J. Neurochem., 2017, 142 Suppl 2. Pp. 26–40.

34. Mehta J., Dhaka S., Paul A.K., Dayananda S., Deep A. Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion. Environ. Res., 2019, 174. Pp. 46–53.

35. Moralev S.N., Rozengart E.V. Comparative Enzymology of Cholinesterases, IUL Biotechnology Series La Jolla, CA (2007). 484 p.

36. Nechaeva N., Prokopkina T., Makhaeva G., Rudakova E., Boltneva N., Dishovsky C., Ere¬menko A., Kurochkin I. Quantitative butyryl¬cholinesterase activity detection by surface-en-hanced Raman spectroscopy. Sensors and Actu¬ators B., 2018, 259. Pp. 75–82.

37. Nel'ga I.A., Medveckiy I.V., Zlobin A.V., Tre¬t'yakov S.V., Sherstyuk A.V., Kostyuchenko I.V. Himicheskoe oruzhie: istoriya issledovaniya fosfororganicheskih otravlyayuschih veschestv za rubezhom. Vestnik voysk RHB zaschity, 2019, 3 (2). S. 175–193.

38. Nemukhin A.V., Lushchekina S.V., Bochenkova A.V., Golubeva A.A., Varfolomeev S.D. Characterization of a complete cycle of acetylcholinesterase catalysis by ab initio QM/MM modeling. J. Mol. Model., 2008, 14. Pp. 409–416.

39. Supotnickiy M.V., Shilo N.I., Kovtun V.A. Himicheskoe oruzhie v irano-irakskoy voyne 1980–1988 godov. 1. Podgotovka Iraka k himicheskoy voyne. Vestnik voysk RHB zaschity, 2019, 1 (3). S. 40–64.

40. Shushkova T.V., Vinokurova N.G., Baskunov B.P., Zelenkova N.F., Sviridov A.V., Ermakova I.T., Leontievsky A.A. Glyphosate acetylation as a specific trait of Achromobacter sp. Kg 16 physiology. Appl. Microbiol. Biotechnol., 2016, 100. Pp. 847–855.

41. Senko O., Gladchenko M., Maslova O., Efremenko E. Long-term storage and use of artificially immobilized anaerobic sludge as a powerful biocatalyst for conversion of various wastes including those containing xenobiotics to biogas. Catalysts, 2019, 9. P. e326, DOI: 10.3390/catal9040326.

42. Senko O., Stepanov N., Tyutyunov A., Sterlin S., Grinberg V., Makhlis T., Efremenko E. Intensification of organophosphorus hydrolase synthesis by using substances with gas-transport function. Appl. Sci., 2017, 7. P. e1305, DOI: 10.3390/app7121305.

43. Senko O., Maslova O., Efremenko E. Optimization of the use of His6-OPH-based enzymatic biocatalysts for the destruction of chlorpyrifos in soil. International journal of environmental research and public health, 2017, 14 (12). P. 1438.

44. Sviridov A.V., Shushkova T.V., Ermakova I.T., Ivanova E.V., Epiktetov D.O., Leontievsky A.A. Microbial degradation of glyphosate herbicides (Review). Appl. Biochem. Microbiol., 2015, 51 (2). Pp. 188–195.

45. Varfolomeev S.D., Semenova N.A., Bykov V.I., Cybenova S.B. Kinetika himicheskih processov v mozge cheloveka. Modelirovanie BOLD-signala pri fMRT issledovanii. Doklady AN, 2019, 488 (2). S. 39–43.

46. Varfolomeev S.D., Semenova N.A., Ublinskiy M.V., Bykov V.I., Tsybenova S.B. fMRI and MR-spectroscopy in research on triggering and autostabilization of N-acetylaspartate. Chemical Physics Letters, 2019, 729. Pp. 84–91.

47. Wang P., Li H., Hassan M.M., Guo Z., Zhang Z.Z., Chen Q. Fabricating an Acetylcholinesterase Modulated UCNPs-Cu2+ Fluorescence Biosensor for Ultrasensitive Detection of Organophosphorus Pesticides-Diazinon in Food. J. Agric. Food Chem., 2019, 67. Pp. 4071–4079.

48. Zav'yalov V.V., Kuzhelko S.V., Zav'yalova N.V., Kovtun V.A., Holstov V.I., Taranchenko Yu.F., Slastilova L.M., Efremenko E.N., Sen'kilev A.P. Sovremennye napravleniya sozdaniya novyh zaschitnyh materialov i tkaney dlya sredstv individual'noy i kollektivnoy zaschity ot toksichnyh himikatov i kletok patogenov. Vestnik voysk RHB zaschity, 2019, 3 (3). S. 117–148.

49. Zhang H., Yang S., Ruyck K.D., Beloglazova N., Eremin S.A., Saeger S.D., Zhang S., Shen J., Wang Z. Fluorescence polarization assays for chemical contaminants in food and environmental analyses. Trends in Anal. Chem., 2019, 114. Pp. 293–313.

Login or Create
* Forgot password?