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Abstract. We describe the Fabry—Perot interfero-

meter designed to study Earth’s upper atmosphere. We 
propose a modification of the existing data processing 
method for determining the Doppler shift and Doppler 
widening and also for separating the observed line in-
tensity and the background intensity. The temperature 
and wind velocity derived from these parameters are 
compared with physical characteristics obtained from 
modeling (NRLMSISE-00, HWM14). We demonstrate 
that the temperature is determined from the oxygen 630 
nm line irrespective of the hydroxyl signal existing in 
interference patterns. We show that the interferometer 
can obtain temperature from the oxygen 557.7 nm line 

in case of additional calibration of the device. The ob-
served wind velocity mainly agrees with model data. 
Night variations in the red and green oxygen lines quite 
well coincide with those in intensities obtained by de-
vices installed nearby the interferometer. 

Keywords: Fabry—Perot interferometry, airglow, 
upper atmosphere wind, upper atmosphere temperature. 
 
 
 
 
 

 

 

INTRODUCTION 

Spectrophotometric studies of night airglow are one 
of the main instruments for studying Earth’s upper at-
mosphere [Shefov et al., 2006]. Features of the genera-
tion of optical radiation in the upper atmosphere, name-
ly its spectral lines and vertical stratification of airglow 
for certain wavelengths, provide information on motion 
and temperature of air masses in various atmospheric 
layers. A physical phenomenon that makes it possible to 
determine atmospheric gas velocity and temperature is 
the Doppler shift of the wavelength of recorded radia-
tion, which arises from collective (wind) or chaotic 
(temperature) motion of radiating particles. Using well-
known expressions (for example [Landau, Lifshitz, 
1988]) 
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( 0 is the wavelength of immobile emitting matter, s 
is the central wavelength of the registered spectral line, 
 is the recorded widening of the spectral line, v, T, 
m are the velocity, temperature, and mass of luminous 

matter particles, k is the Boltzmann constant, c is the 
speed of light in vacuum), we can estimate the sensi-
tivity necessary for the successful application of the 
method: 
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In order for the instrument to record changes in wind 
velocity at 10 m/s and temperature at 10 K for a wave-
length of 630 nm, its sensitivity should be such that an 
investigator can observe changes of position and width 
of the spectral line at 10–5 and 10–4 nm respectively. 

One of the currently available methods for recording 
the spectral composition of optical radiation with this 
sensitivity is a method for observing interference in par-
allel rays in the Fabry–Perot interferometer [Born, Wolf 
1973]. There are many scientific instruments (for exam-
ple, [Wu et al., 2004; Shiokawa et al., 2012; Anderson 
et al., 2009; Ignatiev et al., 1998]) that use this method 
to study optical airglow. The field of view of these in-
struments, except for that described in [Anderson et al., 
2009], is units of degrees, so in a single observation 
session we can obtain characteristics of only a certain 
local region of the celestial sphere. Therefore, to extend 
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[Ignatyev, Yugov, 1995]); however, the use of two-
dimensional CCD matrices for recording interference 
patterns and the computational capabilities of modern 
computers open up somewhat greater possibilities of 
image processing. Therefore, the basis for processing 
observational data is the method described in [Harding 
et al., 2014]. Its application requires us to represent a 
two-dimensional interferogram as one-dimensional 
through circular integration of the available two-
dimensional dataset, using the method described in 
[Makela et al., 2011]. As a result, the two-dimensional 
interferogram is represented as one-dimensional, reflect-
ing the dependence of intensity on distance, which is 
measured from the center of the interference pattern. 
For successful circular integration of the interferograms 
obtained from airglow observation (especially under 
variable intensity of recorded light), we should periodi-
cally register calibration laser interferograms. These 
calibration data help to determine current parameters of 
the measuring system, such as the center of the interfer-
ence pattern and the instrumental function. The instru-
mental function, which, in fact, is a modified Airy func-
tion [Borne, Wolff, 1973], contains additional infor-
mation on inhomogeneities of the optical system of the 
interferometer. Hereinafter, we utilize this instrumental 
function to describe interferograms obtained from 
nightglow observations. This model is an integral function 
composed of a set of modified Airy functions entering the 
integral with values of intensity and wavelength corre-
sponding to an assumed form of spectral line of detected 
light. Obviously, the determination of parameters of the 
instrumental function and the model function describing a 
recorded signal requires performing the procedure of “fit-
ting” the model functions to experimental data. For this 
purpose, we use least-squares minimization with the Le-
venberg–Marquardt algorithm [Marquardt, 1963]. 

Harding et al. [2014] logically present moments of 
reduction of the Airy function describing the interfer-
ence pattern from monochromatic radiation at the output 
of the ideal Fabry—Perot etalon to a modified form; 
therefore, it makes no sense to dwell on these operations 
here. We give only the final result and describe some 
modifications essential for this study. The modified 
Airy function has the form 

     
m
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, , , ,
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A r b s r A s ds B     (5) 

where  is the radiation wavelength, r is the distance 
from the center of the interference pattern, rm is the ra-
dius of the boundary of the interference pattern. In fact, 
(5) is the convolution of the Airy function, which has a 
variable intensity depending on r, necessary to take into 
account vignetting of the optical system, 
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with a kernel reflecting defects of the optical system, 
which blur the image on the matrix, 
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plus a background B, which naturally arises from ther-
mal noises of pixels and penetration of the background 
radiation, uniformly distributed over wavelengths, 
through the input filter and etalon.  

In the above expressions, R is the reflection coeffi-
cient of the Fabry—Perot etalon’s surfaces, n is the re-
fractive index of the medium between the reflecting 
surfaces of the etalon, t is the distance between the eta-
lon’s surfaces, α is the magnification factor; I 0, I1, I2 are 
constant coefficients. 

The dependence of the Gaussian kernel width on the 
distance in the CCD matrix is as follows: 
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where 0, 1, 2 are constant coefficients. 
Expression (5) in [Harding et al., 2014] is used as an 

instrumental function. By minimizing the difference of 
this model with one-dimensional laser interferograms, 
we can find current values of the constant coefficients in 
(6)–(8), reflection coefficient, gap of the etalon, and 
magnification factor. The values derived from the min-
imization are used as nonvarying parameters in the 
model of night-sky interferograms: 
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where Y() reflects the shape of the spectral line: 
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Integration limits in (9) are chosen based on charac-
teristics of the input filter. The values reflecting the 
background B, line intensity I0, its position s and width 
 are determined by minimizing the difference be-
tween observed data and the model of night-sky inter-
ferograms. After minimizing (9) with night-sky obser-
vations, s and  obtained from (1) and (2) determine 
temperature and velocity of the emitting medium along 
the line of sight of the interferometer. 

To improve the stability of the interferogram pro-
cessing method put forward in [Harding et al., 2014], 
we modify the expressions describing interference pat-
terns. The following changes in models of calibration 
laser light and airglow can be considered essential: 

1) substituting the polynomial dependence of in-
tensity (the numerator in (6)) by the first terms of the 
Fourier expansion such that this dependence looks 
like expression for Gaussian kernel width (8);  

2) replacing the magnification factor α by the direct 
calculation of the inclination angle of input radiation 
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Another factor capable of causing the temperature to 
fall to such abnormally low values may be the presence 
of a spurious signal, for example, the hydroxyl emission 
in the (9-3) band, which overlaps the wavelength of 630.0 
nm. As shown in [Hernandez, 1974], such a hypothetical 
possibility exists.  

It should be noted that Nakamura et al. [2017] report 
the results from determination of temperature from the 
630 nm line and show that the temperature values ob-
tained with the Fabry—Perot interferometer are periodi-
cally much lower than the atmosphere temperature at 
the height of the emission layer. The authors explain 
this problem of underestimation of the measured tem-
perature by distortion of a signal, recorded with the in-
terferometer, owing to the hydroxyl emission ((9-3) 
band) at a wavelength that almost coincides with the 
630 nm atomic oxygen emission. Thus, other scientific 
teams also face the problem of systematic underestima-
tion of temperature from interferometric measurements; 
therefore, it calls for further investigation. Some pilot 
studies of this problem can be carried out using instru-
ments of GO Tory, which is equipped with a Fabry—
Perot interferometer and a spectrometer, which allows us 
to examine variations in the hydroxyl emission intensity. 

Let us examine in more detail several interfero-
grams obtained during the night on January 26–27, 
2017 at 18:00, 00:00, and 02:00 local solar time (Fig-
ure 10). As the 630.0 line intensity decreases, the 
second ring system becomes more pronounced in a 
one-dimensional interference pattern. It is not visible 
in two-dimensional interferograms due to a very 
noisy signal. If we construct model one-dimensional 
interferograms for wavelengths corresponding to the 
hydroxyl emission lines P1(2) 628.75, P2(3) 629.79, 
and P1(3) 630.7 nm [Hernandez, 1974] in one plot 
with experimental data, we can compare the second 
ring system with one of these lines. Figure 11 shows 
two interferograms for 18:00 and 02:00 local solar 
time. Experimental data, the most well-chosen model, 
and the model with wavelengths corresponding to 
hydroxyl emission and exact position of the oxygen 
line 3P2–

1D2 630.0 308 nm are plotted in different 
colors [Hernandez, 1974]. In this case, we need the 
model for the exact value of the oxygen line because 
there can be some constant systematic shift in the 
observation system at the accuracy level considered. 
Therefore, to identify the second line, we should shift 
all model curves of hydroxyl and oxygen ring sys-
tems to the right by the same amount to fit the model 
curves describing the oxygen ring system with obser-
vational data. Here the hydroxyl line P1(3) will coin-
cide with the second ring system. According to [Her-
nandez, 1974], this line is the brightest in this triplet. 
This agrees with observations we perform. Thus, the 
data presented in Figure 11 suggest that with a signif-
icant decrease in the intensity of the oxygen line 3P2 –
1D2, the hydroxyl line P1(3) begins to resolve, but due 
to minimization the model still describes the brightest 
oxygen line. Hence, the temperature derived from 
minimization is in fact the temperature obtained from 
observation of the 630.0 nm line. 

As already noted, the presence of cloudiness can dis-
tort parameters of observed optical radiation and thus 
can distort estimated wind and temperature characteris-
tics. A considerable temperature decrease, by more than 
100 K, occurred almost immediately after sunset, and an 
additional decrease to ~150 K began at 02:00. This does 
not correlate with the observed cloud behavior. Moreo-
ver, the lowest temperature at this night was recorded at 
the zenith, while the maximum background intensity 
hypothetically capable of distorting the results was ob-
served westward. 

Figure 12 shows variations in the intensity of the 
hydroxyl emission arising at mesopause heights ((6-
2) band, ~ 87 km), and in ionospheric parameters: 
electron density at the ionization maximum Nm F2 
and the height of the ionization maximum Hm F2 ver-
sus direction-averaged intensity and Doppler temper-
ature for the 630.0 nm line. The observations were 
made with an infrared spectrometer located in the 
immediate vicinity [Medvedeva et al., 2012] and with 
a DPS-4 ionosonde. The data are given for January 
26, 2017. We can say that the behavior of the 630 nm 
line intensity correlates with the Doppler temperature 
behavior. This is especially noticeable during tem-
perature anomaly. The behavior of the hydroxyl 
emission intensity anticorrelates with the behavior of 
the observed temperature, but this anticorrelation can 
in some cases be delayed for some time, and in some 
cases may be absent (Figure 13), despite the abnor-
mally low temperature. It should be noted that the 
temperature behavior during the anomaly on January 
26, 2017 is in good agreement with the behavior of 
the charged component of the upper atmosphere 
(Figure 12, right). 

This event is of special interest and will be consid-
ered in detail in follow-up studies. 

 
NIGHT VARIATIONS  
IN TEMPERATURE FROM  
THE 557.7 nm LINE. 
CALIBRATION PROBLEM. 
COMPARING WITH DATA  
ON ROTATIONAL TEMPERATURE 
OF HYDROXYL MOLECULES 

It is unreasonable to use a helium-neon laser for cal-
ibration with the 557.7 nm light filter because a signal 
in this case is extremely weak. The model parameter 
which greatly depends on emission wavelength and is of 
key importance in determining temperature is the reflec-
tion coefficient R. To work in the green spectral region, 
we received a laboratory-measured wavelength depend-
ence of the reflection coefficient of the etalon’s surfac-
esfrom manufacturers of the interferometer. This de-
pendence was used to scale this parameter in the in-
strumental function while minimizing for data obtained 
at a wavelength of 557.7 nm. Night variations in tem-
perature as observed in the green line of atomic oxygen 
for two different nights are shown in Figure 14. The 
absolute temperature as derived from the interferometer  
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CONCLUSIONS 

A new instrument designed to determine spectral 
characteristics of optical airglow at middle latitudes has 
been put into operation. We have carried out observations 
of characteristics of the spectral oxygen lines with wave-
lengths of 557.7 and 630 nm. Using the obtained character-
istics, we have determined the behavior of line and back-
ground intensities overnight, as well as the behavior of 
temperature and wind velocity for different heights in 
Earth’s atmosphere. We have compared the results to data 
obtained with other instruments and to model outputs.  

We have analyzed some factors and geophysical con-
ditions that potentially affect the accuracy of measure-
ments. In particular, we have shown that for the night of 
January 26, 2017 considered, the hydroxyl emission ((9-3) 
band), whose lines fall into the passband of the 630 nm 
interference filter, could not have a significant effect on the 
determination of the temperature T630. During some nights, 
there is characteristic anticorrelation between the behavior 
of hydroxyl emission intensity ((6-2) band) and tempera-
ture T630, which could be an additional factor exhibiting the 
effect of hydroxyl signal on estimated temperature. How-
ever, this anticorrelation is often delayed (of order of half 
an hour), and in some cases, at a significant decrease in 
T630, there is no anticorrelation. These facts may suggest 
that the relationship between the observed temperature T630 
and the hydroxyl emission intensity is formed by processes 
occurring in the upper atmosphere, and is not an error in 
observation or processing of the results. 

We have noted the nature and degree of influence of 
the background emission caused by atmospheric scat-
tered radiation background from external natural 
sources. We have compared 557.7 and 630 nm emission 
intensities,  temperature (557.7 nm emission) with data 
from the all-sky camera in the 630 nm emission, the 
SATI-1 spectrometer (557.7 and 630 nm emission spec-
trometer), and the infrared spectrometer (rotational OH 
temperature ((6-2) band). We have calculated and re-
ported model values (NRLMSISE-00, HWM14) of ki-
netic temperatures and winds for heights of the maxi-
mum 557.7 and 630 nm emission at the site of the Fab-
ry—Perot interferometer observation. A fairly good 
agreement has been obtained for model and experimen-
tally observed values of wind velocity, whereas temper-
atures T630 in some intervals significantly differ from 
model values. The closest agreement between tempera-
tures is observed in the pre-dusk hours. The most acute 
and still unresolved issue in these results is the observed 
extremely low (~ 200 K) temperatures (in the period 
01:30–03:30 LT), determined from the 630 nm emis-
sion. In this interval, a sufficiently high correlation of 
T630 with f0F2, related to the 630 nm line emission region, 
does not allow us to unambiguously associate this result 
with the inaccuracy in the interferometric technique of 
determining T630 or with the influence of meteorological 
conditions; it requires additional experimental and theo-
retical studies and, possibly, refinement of the technique 
for processing interferometric observations.  

Note that a possible explanation for the observed ex-
tremely low temperatures, comparable to the tempera-

tures at heights of the upper mesosphere–lower thermo-
sphere in the 557.7 nm emission region (~85–115 km), 
could be one of the known channels of population of the 
1D atomic oxygen level associated with the 557.7 nm 
emission at the transition from 1S to 1D. In this case, 
each emission of 557.7 nm photon produces one excited 
O(1D) atom With hypothetical extreme decreases in the 
630 nm emission intensity from the ionospheric F2 re-
gion formed by dissociative recombination, a certain 
contribution to the height-integral 630 nm emission in-
tensity (and hence to the temperature) could also be 
made by the emission from this wavelength from the 
557.7 nm emission height. However, it is generally ac-
cepted that, because of the long lifetime of the metasta-
ble level 1D and high rates of its collisional deactivation 
at these heights, there is no 630 nm emission at the up-
per mesosphere–lower thermosphere heights. The rela-
tionship between kinetic temperatures obtained with at-
mospheric models and Doppler temperatures obtained 
from interferometric observations in the 630 nm emission 
will be examined more thoroughly in follow-up studies. 

The comparison between the temperature obtained 
from observations of the OH emission (6-2) and that 
obtained from observations of the 557.7 nm oxygen 
line shows a significant discrepancy between these 
characteristics, despite the fact that the emission 
sources are vertically spaced by about 10 km. So, it is 
unacceptable to use hydroxyl emission to calibrate the 
interferometer that records emission at 557.7 nm. 
Therefore, for the 557.7 nm line, we should search for 
additional means of calibration of the instrument. In 
this case, it may be reasonable to use a low-pressure 
mercury lamp, which has a line in the green spectral 
region, as a source of line optical radiation.  

In general, the results obtained with the Fabry—Perot 
interferometer designed to observe the airglow in two 
atomic oxygen lines of 557.7 and 630.0 nm demonstrate 
validity of this instrument and its quite high potential 
for follow-up studies of thermodynamic mesosphere–
lower thermosphere characteristics. 

We have used data from the Fabry—Perot interfer-
ometer included in the optical complex of the Angara 
Multiaccess Center. 
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