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____________________________________________________________________________________________ 

 

The world-wide spatial distribution of the wave power in the Pc5 band during magnetic storms has 

been compared with auroral oval boundaries. The poleward and equatorward auroral oval boundaries 

are estimated using either the British Antarctic Survey database containing IMAGE satellite UV 

observations of the aurora or the OVATION model based on the DMSP particle data. The “epicenter” 

of the spectral power of broadband Pc5 fluctuations during the storm growth phase is mapped inside 

the auroral oval. During the storm recovery phase, the spectral power of narrowband Pc5 waves, both 

in the dawn and dusk sectors, is mapped inside the auroral oval or around its equatorward boundary. 

This observational result confirms previously reported effects: the spatial/temporal variations of the 

Pc5 wave power in the morning/pre-noon sector are closely related to the dynamics of the auroral 

electrojet and magnetospheric field-aligned currents. At the same time, narrowband Pc5 waves 

demonstrate typical resonant features in the amplitude-phase latitudinal structure. Thus, the location 

of the auroral oval or its equatorward boundary is the preferred latitude for magnetospheric field-line 

Alfven resonator excitation. This effect is not taken into account by modern theories of ULF Pc5 

waves, but it could be significant for the development of more adequate models. 
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_____________________________________________________________________________________ 
 

1.  INTRODUCTION 

At high latitudes, there are two well-known electrodynamic phenomena which so far have been 

considered as independent: The auroral oval and ULF Pc5 pulsations [Walker, 2004]. The auroral oval 

is a region of auroral emission caused by precipitation of suprathermal electrons and energetic protons 

[Newell et al., 1996]. The oval boundaries are in a fairly constant motion: During storm time the 

equatorward boundary moves to lower latitudes, and it travels poleward during storm recovery phase. 

The elevated ionospheric conductivity in this region provides a latitudinally confined channel for the 

auroral electrojet in the westward direction on the dawn side and in the eastward direction on the dusk 

side. The auroral electrojet is the ionospheric part of the 3D magnetosphere-ionosphere current system 

driven by the solar wind-magnetosphere interaction.  
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Geomagnetic pulsations in the Pc5 band (f~1.5–7 mHz) are probably the most easily observed ULF 

waves [Nakariakov et al., 2016]. Due to their large amplitudes (up to some 100 nT) and long periods 

(several minutes) Pc5 pulsations can even be detected in magnetograms with a low sensitivity and 

sampling rate (e.g., 1 min). Pc5 pulsations are the most powerful electromagnetic wave process in 

geospace [Kleimenova et al., 2005]; their signatures can be observed in space (with fluxgate 

magnetometers, electric probes, and particle detectors) [Takahashi, 1991], in the ionosphere (with radars, 

riometers, and auroral imagers) [Mager et al., 2015], and on the ground (with magnetometers and telluric 

sensors) [Menk, Waters, 2013]. Despite the long history of studies of their physical nature and 

possible excitation mechanism, the physics of Pc5 waves has not yet been finally established. 

Several types of wave activity are observed in the Pc5 frequency range, so different mechanisms 

may contribute to magnetospheric wave generation in this band. Broadband Pc5 disturbances are 

observed during the storm growth phase [Kleimenova et al., 1997] and the main phase [Schott et al., 

1998] while quasi-monochromatic Pc5 waves occur during the recovery phase [Posch et al., 2003].  

 

As Pc5 activity and auroral oval are both high-latitude phenomena, statements about Pc5 predominant 

occurrence/intensity at auroral latitudes are quite common [e.g., Posch et al., 2003; Pahud et al., 2009; Rae 

et al., 2012]. However, those statements were mainly based on expected statistical location of the auroral 

oval, whereas no direct comparison with a current oval location has been examined. 

 

The peculiar latitudinal amplitude-phase structure of Pc5 waves on the ground in the morning 

sector [Saka et al., 1982; Walker et al., 1979; Ziesolleck et al., 1994] agrees well with predictions from 

the resonant theory [Tamao, 1965; Chen, Hasegawa, 1974; Southwood, 1974], suggesting that these 

waves are localized Alfven eigenoscillations of the magnetospheric resonator driven by MHD 

disturbances from remote parts of the magnetosphere. According to this notion, the latitude of the 

Pc5 amplitude peak corresponds to the L-shell where the local Alfven eigenfrequency fA(L) matches 

the frequency of an external disturbance f, i.e. f~fA(L). 

 

Thus, according to the existing paradigm the latitudes of the auroral oval location and the Pc5 power 

peak magnitudes are determined by entirely different processes and should not be directly related to each 

other. However, Lam and Rostoker (1978) noticed that the positions of the westward auroral electrojet 

and Pc5 power were observed in the same latitude range. The close association of Pc5 wave latitudinal 

maximum and position of the auroral electrojet was confirmed for several cases by Pilipenko et al. 

(2001). A multiple regression analysis made by Simms et al. (2006) showed that Pc5 spectral power 

increased at ground magnetometers when more time was spent under the aurora, as determined from the 

DMSP particle data. However, the problem of a possible relationship between the Pc5 excitation region 

and the relevant magnetospheric domain and its relevance to generation mechanisms of ULF waves in the 

magnetosphere has not been investigated further. 

 

In this paper, we analyze a correspondence between the auroral oval and storm-time Pc5 wave 

activity during two magnetic storms on November 5–7, 2001 (Dst=−292 nT), and November 24–25, 2001 

(Dst=−221 nT) with similar interplanetary drivers. For these periods, the identification of the auroral oval 
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For each MLT segment, an intensity profile was constructed by finding the average intensity 

across bins of 1° magnetic latitude in the range from 50° to 90°. A Gaussian function with a 

quadratic background was fit to each intensity profile, and the auroral boundaries were estimated 

using the width at half maximum of the Gaussian peak. The equatorward oval boundary derived from 

the BAS model was found to be in good agreement with the boundary determined by medium-scale 

field-aligned currents detected by the low-orbiting CHAMP satellite [Xiong, Lühr, 2014]. During the 

storms under consideration the BAS database covers the period of November 5–7, 2001 and 

November 24, 2001 (November 25 data are missing). A comparison of the BAS model boundaries 

with 1D east-west equivalent electrojet derived from the IMAGE magnetometer data 

[http://www.geo.fmi.fi/MIRACLE/iono_1D.php] shows that the auroral electrojet is mostly confined 

within the auroral oval (not shown). 

 

Another source of information on the location of the auroral oval is the OVATION model 

[http://sd-www.jhuapl.edu/Aurora/ovation_live/] based on the DMSP particle data. DMSP data are 

not affected by sunlight /darkness, and sensitivity of the particle data is many times greater than 

possible from either ground-based or space-borne imagers. The equatorward boundary used in the 

OVATION model is the equatorward edge of the soft electron precipitation boundary defined by 

Newell et al. (1996). The poleward boundary used in OVATION is assumed to be the open/closed 

field line boundary. 

 

Geosynchronous monitors. Ground observations are augmented with observations in the region of 

geosynchronous orbit at GOES-8 and GOES-10 satellites with 3-component magnetometer onboard. Roughly, 

near the top of a field line, the Bp component corresponds to the field-aligned component, Be corresponds to the 

radial component, and Bn corresponds to the azimuthal component. The ionospheric footprint of GOES-8 is 

shown in Figure 1.  

 

3.  MAGNETIC STORMS IN NOVEMBER 2001 

 

November 5–7 storm. This two-step magnetic storm started on November 5 (day 309), ~19 UT after 

reversal of IMF Bz southward (Figure 2). The second, more intense step started on November 6 (day 310) 

~02 UT when according to WIND data IMF Bz turned southward and reached nearly –80 nT. 

Accordingly, Dst index dropped to –292 nT. SW velocity data from OMNI database are missing during 

the storm main phase. Arrival of high-density (~60 cm–3) solar ejecta on November 05 before the storm 

(see Np data from OMNI database) caused a strong compression of the magnetosphere. As a result, 

GEOTAIL satellite near the dawn sector at distance of ~15RE occurred on November 06 after ~02 UT in 

the magnetosheath. Here the satellite recorded the SW velocity increase up to V~650 km/s.  

 

Intense flow of energy from the SW into the magnetosphere under such IMF conditions produced 

nearly immediately a substorm with AE up to ~3000 nT. The magnetograms from all longitudes (Figure 4) 

show that the substorm epicenter on November 06, ~02 UT is located in the early morning (~2 MLT) sector 

(LRV) and gradually shifts further eastward, reaching ~110° on ~04 UT. 
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6.  LOCAL LATITUDINAL STRUCTURE OF PC5 WAVES 

 

The physical nature of ULF waves may be examined from an analysis of the amplitude-phase 

latitudinal distribution of spectral density of north-south H and vertical Z components [Pilipenko, 

Fedorov, 1994]. Wave excitation due to the Alfven field line resonance will be revealed at two 

latitudinally-separated stations in a peculiar spatial structure with a frequency-dependent maxi-mum of 

amplitude, and a steep phase gradient between stations. The resonant Alfven eigenfrequency fA() of the 

magnetic field line in-between the stations corresponds to the frequency where the ratio of spectral amplitudes 

goes through 1, and the cross-phase reaches an extreme value. Gradient methods to identify fA() from the 

latitudinally-separated stations are reviewed in [Pilipenko, Fedorov, 1994; Menk, Waters, 2013]. The direction 

of the apparent phase velocity corresponding to this phase gradient is determined by the latitudinal distribution 

of the Alfven eigenfrequency fA() in the magnetosphere. For a typical latitude-decreasing dependence fA() 

the apparent phase velocity is expected to be directed poleward. These amplitude/phase features are more 

robust indicator of the Alfven field line resonance than a latitude dependence of the observed wave frequency 

or polarization.  

 

We examined the latitudinal structure of monochromatic Pc5 waves during the storm recovery 

phase. For the November 7 storm in the morning sector the dominant wave frequency is ~2.2 mHz 

(Figure 10, a). The latitudinal distribution of spectral power at this frequency along the ~300° profile has 

a maximum at ~67° (FSM) (Figure 10, a). The phase structure is evident in comparison of 

magnetograms of the H-components from the nearby station pair FSM (67.4°) – YKC (69.0°). This 

comparison evidently indicates poleward propagation from lower to higher latitudes. 

 

During the recovery phase of the November 25 storm Pc5 pulsations in the morning sector and dusk 

sectors were detected. The dusk Pc5 pulsations had a dominant frequency of ~1.5 mHz. The maximal spectral 

power at this frequency along the profile ~330° was reached at latitude ~67° (GIL) (Figure 11, a). Clear 

signatures of field-line resonance can be seen: The amplitude of magnetic variations was locally enhanced 

at ~67° latitude (up to ~400 nT at GIL), and comparison of the time delay between similar waveforms at 

stations ISL (65.0°), GIL (67.2°), and FCC (69.8°) indicates an apparent poleward propagation. 

Analysis of Pc5 amplitude–phase distribution along the entire ~330° profile by Rae et al. (2005) also 

evidently demonstrated the resonant structure of these pulsations. 

 

The local latitudinal structure of Pc5 pulsations in the morning sector (profile along geomagnetic 

longitude ~110°) during the storm recovery phase on November 25 is shown in Figure 12, a. These pulsations 

are not very monochromatic, and their spectra during the period of pulsation activity (04:25–04:55 UT) 

demonstrate the occurrence of two main spectral peaks at ~1.5 and ~2.8 mHz. The latitudinal maximum of 

wave spectral power at 2.8 mHz was reached at ~64° (Figure 12, b). Although the pulsations are not very 

regular, signatures of field line resonance can be seen: The amplitude of magnetic variations is locally 

enhanced, and the phase profile has a steep gradientat the latitude of the spectral maximum (Figure 12, b). This 

phase gradient between different stations of the meridional profile indicates apparent poleward propagation. 
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Thus, all Pc5 pulsations excited at the storm recovery phase both in the morning and dusk sectors 

demonstrate the local amplitude-phase structure predicted by the Alfven resonance theory. Broadband 

fluctuations in the Pc5 band during storm main phase though have a latitudinally confined maximum of 

amplitude, but they are not coherent enough at latitudinally separated sites for the cross-phase 

measurements.   

 

7.  DISCUSSION: INFERENCE FOR Pc5 WAVE GENERATION MECHANISMS  

 

ULF waves can be an effective channel of the wave energy transfer from the SW flow to the 

ionosphere at the storm/substorm recovery phase when a direct energy flow via the reconnection process 

subsides due to northward IMF orientation. For example, during 3-hour period (01–04 UT) on November 

25, 2001, the total energy of Pc5 waves dissipated in the ionosphere was estimated as ~4.1014 J, that was ~30 % 

of the Joule heating during an entire substorm cycle [Rae et al., 2007]. Typically, the occurrence rate and 

intensity of Pc5 waves have a strong maximum in the morning sector, and a weaker one in the afternoon 

sector. The azimuthal phase propagation and the polarization features of the ground magnetic disturbance 

reverse across the noon meridian [Samson, 1972]. These observations led earlier workers to the 

conclusion that the Kelvin–Helmholtz (KH) instability at the magnetopause or LLBL is the most likely 

candidate for the Pc5 generation source. Later, indications were found that periodic variations of the SW 

dynamic pressure [Kessel et al., 2004] or intermittency of the magnetosheath turbulence [Hartinger et al., 

2013] constitute a possible source of Pc5 wave packets in the dayside magnetosphere. Wave disturbances 

generated by variations of the SW pressure propagate tailward along both sides of the magnetosphere, 

thus producing an azimuthal phase velocity pattern across the noon meridian similar to the KH instability. 

 

Transfer of the wave energy from the magnetopause into the inner magnetosphere is to be 

accompanied by excitation of standing Alfven field line oscillations. Direct consequences of the 

resonance process are the wave localization across the magnetic shells, and the phase shift of ~ across 

the resonant maximum. The amplitude and phase spatial distributions of Pc5 clearly demonstrated these 

resonance properties that were seen with ground magnetometers [Saka et al., 1982; Ziesolleck, 

McDiarmid, 1994; Rae et al., 2005], radars [Walker et al., 1979)], and optical cameras [Samson et al., 

2003]. The amplitude maximum position statistically depends on frequency that increased towards low L 

values. The apparent meridional phase velocity in the vicinity of the amplitude maximum outside the 

plasmasphere was typically directed poleward.  

 

The existence of resonance effects for Pc5 geomagnetic pulsations is commonly considered as an 

indicator of driving of localized field line Alfven oscillations by an external source. The wave energy can 

be transported to a resonant shell by large-scale mode (cavity, waveguide, or surface). From these ideas of 

Pc5 generation it follows that the ionospheric electrojet or auroral oval structure seemingly should not 

influence a location of Alfven field line resonance, because the latter is determined by the radial profile of 

Alfven velocity. However, Raspopov, Afanasieva (1982) noticed a statistical connection between the 

morning Pc5 pulsations and nighttime substorms: Pc5 generation was located near the eastern edge of the 
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westward auroral electrojet near the equatorial boundary of the statistical position of the auroral oval. 

Lam and Rostoker (1978) and later Pilipenko et al. (2001) showed that the positions of the westward 

auroral electrojet and the Pc5 wave power were closely linked to each other: During their meandering 

with time the position of the Pc5 latitudinal peak remained within the borders of the auroral electrojet. 

The motion of the auroral electrojet correlated with Pc5 power independent of concomitant changes in the 

SW or IMF. Lepidi and Francia (2003), analyzing a statistical latitudinal distribution of low-frequency 

(1–4 mHz) geomagnetic fluctuations, concluded that the latitude of their maximum power could be 

considered as a marker of the auroral oval position. A multiple regression analysis [Simms et al., 2006] 

showed that spectral power of Pc5 activity is increased at ground magnetometers when they are under the 

aurora. In that study, auroral boundaries were determined from DMSP particle data. A spatial association 

of Pc5 waves with magnetospheric field-aligned currents was reported by Potemra et al. (1988) and 

Bochev et al. (2009). Thus, the mentioned above results indicate that the Pc5 wave activity turns out to be 

closely coupled with the auroral electrodynamics comprising ionospheric electrojet, magnetospheric field-

aligned currents, and auroral particle precipitation. The storm-time Pc5 events analyzed in this paper with 

the use of the database of auroral oval boundaries derived from IMAGE UV observations never used so far 

for ULF wave studies have confirmed this conjecture and strongly suggested that the auroral oval is 

favorable region of the Pc5 occurrence.  

 

However, the correspondence between the auroral oval and Pc5 wave “epicenter” may be considered 

just as accidental coincidence which does not deserve any in-depth examination. We suppose that the 

ULF wave physics inside the auroral region is rather specific, therefore the standard field line resonance 

model which originally has been developed for mid-latitudes has to be augmented and modified for Pc5 

waves. Here we mention several of these issues: 

 an integral part of the auroral region is the field-aligned potential drop along auroral field lines 

named as the Auroral Acceleration Region [Rönnmark, 2002]. The AAR occurrence is known to cause an 

additional scale-dependent damping of Alfven waves at auroral latitudes [Vogt, Haerendel, 1998]. For 

high but reasonable values of the mirror resistance this mechanism is likely to dominate over ionospheric 

damping [Fedorov et al., 2001]. Nonetheless, in studies of Pc5 wave energy dissipation in the ionosphere 

only the Joule heating was considered so far [Rae et al., 2007; Hartinger et al., 2015]; 

 a high variability and turbulence level of plasma and magnetic field in the auroral oval. Resulting 

fluctuations of the Alfven resonator eigenfrequency can considerably suppress the Pc5 wave excitation 

rate [Coult et al., 2007]. 

 

Moreover, one cannot exclude that the auroral oval plays an active role in Pc5 excitation. In 

particular, an association of broadband Pc5 power inside the auroral oval during the storm growth phase 

(see Section 5) could be a result of intense fluctuations of magnetospheric field-aligned currents linked 

with the oval. A resonant response to this driving is to be significantly suppressed by irregular variations 

of the Alfven eigenfrequency. Excitation of resonant Alfven oscillations becomes possible at the storm 

recovery phase only. However, possible simple explanation of the auroral oval — Pc5 wave coupling is 

that oscillations of the entire 3D magnetosphere-ionosphere current system [Rostoker, Lam, 1978] and 
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enhanced conductivity in the region of the auroral oval [Sutcliffe, Rostoker, 1979] have certain pitfalls 

and demand more elaborate models. Pilipenko et al. (2016) proposed that intense fluctuations of irregular 

field-aligned current associated with the auroral electrodynamics can be an additional driver of Alfvenic 

resonant waves in the auroral oval.  

 

The close association of the auroral oval and Pc5 pulsations is not taken into account by modern 

theories of ULF waves, but it could be significant for the development of more adequate models. Ground 

observations of latitudinal structure of Pc5 power could be used as a simple indicator on the instant 

location of the auroral oval. Pc5 — auroral oval correspondence should be also taken into account by any 

realistic model of electron energization by ULF turbulence. The dynamics of ULF wave activity 

“epicenter” during magnetic storms is important not only for the physics of ULF waves but for 

understanding the formation of the outer radiation belt. The transfer of considerable energy of Pc5 waves 

to a small group of magnetospheric electrons via wave resonant interactions while drifting around Earth 

was suggested as a possible mechanism of radiation belt acceleration of magnetospheric electrons up to 

relativistic energies [e.g., Mann et al., 2012].  

 

CONCLUSION 

 

In this paper we should like to draw the attention of ULF wave community to some specific features of 

storm-time Pc5 pulsations. The mapping of the auroral oval derived either from BAS IMAGE or OVATION 

models and Pc5 spectral power has shown that the wave power, both in the morning and dusk sectors, is 

localized inside the auroral oval or around its equatorward boundary. This observational result confirms the 

effect earlier described: Spatial/temporal variations in Pc5 wave power in the morning/pre-noon sector are 

closely related to the location and intensity of the auroral electrojet and magnetospheric field-aligned currents. 

From the observed resonant features of the Pc5 wave structure and the relationship between ULF wave power 

and the auroral boundaries it may be concluded that the location of the auroral oval and auroral electrojet (or its 

equatorward border) is a preferred latitude for magnetospheric field-line resonator excitation. Thus, a 

latitudinal maximum of Pc5 wave power during both growth and recovery storm phases can be used as a rough 

marker of the auroral oval location. However, an adequate interpretation may require a substantial 

augmentation of existing Pc5 models.  
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