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Abstract. The paper addresses the problem of accel-

eration of particles in a constant, uniform magnetic field 

of magnitude B and a uniform electric field perpendicu-

lar to it, which slowly increases with time. Assuming 

that the electric field grows linearly up to the maximum 

value Em=B , approximate analytical relations have 

been found which determine the particle velocity de-

pendence on the acceleration time. The particles are 

shown to accelerate for the entire time of the increase in 

the electric field to a certain final energy, whose value 

depends on the acceleration rate. It has been established 

that the lower the acceleration rate, the greater the limit-

ing energy. In the case when the ratio Em /B<0.9, using 

the solution method proposed by Alfvén in the drift ap-

proximation, an analytical solution of the relativistic 

equation of particle motion has been obtained. The re-

sults can be used to find the energy of particles in vari-

ous pulsed processes in space plasma. 

Keywords: particle acceleration, crossed electric 

and magnetic fields, constant magnetic field, time-

varying electric field; space plasma. 

 

 

 

 

 

INTRODUCTION 

In collisionless space plasma, charged particles 

are mainly accelerated in electromagnetic fields ex-

isting in the plasma. One of the important cases is the 

particle acceleration in stationary magnetic and time-

varying electric fields specific to different pulsed 

processes in the space environment. Such situations 

occur in flare processes in the solar chromosphere, 

interplanetary plasma, Earth’s magnetosphere and 

ionosphere. Typically, the time-varying electric field 

is the so-called polarization field arising from plasma 

inflow into regions with a curved magnetic field. A 

well-known example is the electric field of polariza-

tion occurring due to separation of oppositely 

charged particles when plasma stream limited in 

space moves in the toroidal magnetic field [Morozov, 

Solov'ev, 1963; Alfvén, Falthammar, 1963; Lindberg, 

Kristoferson, 1971; Lindberg, 1978; Alfvén, 1981]. 

Evidence on the occurrence of such fields was ob-

tained in the last century during laboratory experi-

ments, performed by Lindberg [Lindberg, Kristofer-

son, 1971; Lindberg, 1978], at collisionless plasma 

ejection into a curved magnetic field. 

Time variation of the electric field in magnetized 
space plasma has a great effect on modulation of cosmic 
rays (CRs) when they propagate in the heliosphere. The 
CR modulation effects are described using an approach 
which assumes that electromagnetic fields in the helio-
sphere are regular and their structure is adequately de-
scribed by the Parker model [Parker, 1963]. In this sit-
uation, a determining factor in modulation of CRs is a 
change in their energy when they move in regular elec-
tromagnetic fields of the heliosphere. The energy 
change, in turn, depends on strength and nature of elec-
tric fields in the interplanetary medium and on the time 
of interaction of particles with these fields [Dvornikov, 

Sdobnov, 2002]. A comprehensive survey into the CR 
modulation due to various factors associated with elec-
tromagnetic fields of the heliosphere has been carried 
out in [Dvornikov et al., 2013], where it is shown that 
under this approach theoretical and experimental CR 
modulation characteristics are reasonably consistent.  

This paper for crossed fields — stationary magnetic 

and time-varying electric fields — presents solutions of 

relativistic equations of particle motion, which can be 

used for finding energy of accelerated particles in dif-

ferent pulsed processes in space plasma and, in particu-

lar, for analyzing CR modulation in the heliosphere. 

 

FORMULATION OF THE PROBLEM 

AND INITIAL EQUATIONS 

Consider motion of a charged particle in a stationary 

uniform magnetic field B whose vector is directed along 

the Z-axis, and in a time-varying uniform electric field E(t) 

directed along the Y-axis. The equations describing the 

dynamics of particles in such fields in the relativistic case 

have the form 

  2 γ
, .

d d
q q c mc q

dt dt
  

p
E vB Ev  (1) 

Here, E and B are vectors of electric and magnetic fields; 

v, p are vectors of particle velocity and momentum re-

spectively; q, m are particle charge and rest mass; c is the 

speed of light, γ is the dimensionless total particle energy, 

normalized to the particle energy at rest mc
2
. Hereafter, 

[vB] is the vector product. Since the electric and magnetic 

fields are mutually perpendicular, we have free motion of 

particles along the magnetic field at a constant velocity 

and two-dimensional motion in a plane perpendicular to 

the magnetic field. In this plane, Equations (1) in compo-

nents take the form 
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γ
.
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y x

y

dpdp
qv B c qE qv B c

dt dt

d
mc qEv

dt

  



  

Here, vх, vy, pх, py are х and у components of particle 

velocity and momentum respectively. Introduce dimen-

sionless variables: τ=ωBt – dimensionless time, where 

ωB=qB/(mc) is the nonrelativistic cyclotron frequency; 

v, w are the x and y velocity components normalized to 

the speed of light. 

Below we solve these equations for a particular case 

when the particle velocity along the magnetic field is 

zero, and the electric field increases with time linearly: 

Е(t)=Вt/T, where T is the time it takes the electric field 

to increase from zero to B. It is assumed that the electric 

field increases so slowly that for the characteristic time 

equal to the cyclotron period Tc= 2π/ωB the electric field 

varies slightly in comparison with B. This means that n 

— the number of cyclotron rotation periods of a particle 

in the magnetic field B for T — should be large: 

n=1/(2πε)>>1, and hence the parameter 

ε=1/(ωВT)=Tс /(2πT)<<1 should be small. In real situa-

tions, an electric field can increase to a maximum value 

Em<B. In this case, time of the increase Tm is shorter, 

whereas ε=1/(ωВTm) increases.  

In the linearly increasing electric field we assume, 

the equations for velocity and energy components in 

dimensionless form are as follows 

( ) ( )
, – , .

d d d

d d dt

  
    

 

v w
w v w   

These equations can be reduced to a system of equations 

only for velocity components 

d

2

d1– , 1– – ,( ) [ ( ) ]
d d

v v
d d

   
 

v w
w v w v  (2) 

where vd=ε=E/B is the dimensionless drift velocity. In 

the nonrelativistic case (γ=1), system (2) has exact ana-

lytical solutions, which at the initial condition v=w=0 

can be written as: 

v=ε(–sinw=ε(1–cos (3)  

Equations (2) are also solved analytically if vd=1 [Lan-

dau, Livshits, 1967]. In this case, Equations (2) have the 

form 

,  – .
ух

у х

dрdрd
р р

d d d


          

  
w v   

Using these formulas, we get 

.
ух

у

dрdр d d
р

d d d d

 
       

    
 

For the initial conditions γ=1, p=xpy=0, we have 

– 1.
у

х

dр
р

d
   


  (4) 

Substituting у

d
р

d

 
   

 
 in (4), we obtain the 

equality 1,
у

у

dр d
р

d d




 
 that yields 

2 / 2 1.yр    

Substituting γ in (4), we get 

2

1 1,
2

у y уdр р dр

d d

 
    

   

  

from which we have [Landau, Livshits, 1967] 

3 6 ,y ур р     (5) 

which suggests a connection between the momentum py 

and the acceleration time. The other variables are given 

by py: 

 2 2 2 22 1, 2, 2 ,y х y y yр р р р р     v  

 22 2 .у yр р w   (6) 

In general, system of equations (2) can be solved on-

ly with numerical methods. 

 

NUMERICAL SOLUTION 

OF SYSTEM OF EQUATIONS (2) 

In the particular case of the linear dependence of 

E(t) on time, for the numerical solution of the initial 

equations we have used the Runge — Kutta method. In 

the calculations, the parameter ε varied in the range 10
–

2
>ε>10 

–7
, with ε varying in the range of five orders of 

magnitude. Results of numerical calculations for ε=10
–2

 

and ε=10
–3

 are presented in Figure 1, which shows time 

dependences of velocity components. For clarity, time 

dependences of v – vd, 
3

d– w  are shown, where 

3

d d,v   are time averaged oscillating values v and w. 

You can see that at the beginning of acceleration the 

particle velocity is oscillatory, whereas the oscillation 

period, as must be the case, coincides with the cyclotron 

one. Obviously, such velocity behavior of particles is 

associated with their cyclotron rotation in the magnetic 

field. The calculations have found that as long as the 

Larmor rotation of particles during their acceleration 

exists, the relations are adequately fulfilled 

d

2 –1/2 3

d d, 1 ) .– ,(v v v        v w   (7) 

The Figure shows the main feature of these results is 

that the particle acceleration process is divided into two 

stages. At the first stage, solutions are oscillatory, and in 

the range of the ε values in use this stage lasts over 90 

% of the acceleration time. It is evident that the duration 

of the first stage increases with decreasing ε, linked to 

the rate of increase in the electric field, and in the final 

phase of the oscillatory stage the period of oscillations 

of velocity components increases, whereas the ampli-

tude of the oscillations decreases. When the amplitude 

tends to zero, the character of solutions changes abruptly,  
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Figure 1. Time dependence (in units of vd) of particle ve-

locity components for ε=0.01 and ε=0.001. Differences are 

given between time oscillating velocity components v and w 

and their time averaged values vd and εγ3 respectively 

 

and the second stage — the aperiodic stage of velocity 

variation with time, at which the time dependence of the 

components takes the aperiodic monotonous form — 

begins. As revealed in the analysis of the numerical cal-

culation results, both at the first and at the second stage, 

for the velocity component w  the relation w=εγ
3
, which 

was taken as a basis, proved to be quite acceptable in 

accuracy. It is easy to show by the first formula of sys-

tem (2) that the relation w=εγ
3
 can be obtained if we set 

vvd=v
2
, v≈vd=ε and that has been done. Further, 

from v
2
=vvd=v2+w2

, given that in calculations 

w/vd<1, we have found a more accurate expression for 

the x velocity component 2 2

d d1–( ).v vv w  Thus, tak-

ing into account relation (7) at the first stage and using 

the method of fitting suitable relations, which can ade-

quately describe the temporal behavior of the velocity 

components in the numerical calculations at the second 

stage, we have arrived at the following important con-

clusion: throughout the time interval of acceleration, 

where w/vd<1, the following approximate time depend-

ences of particle velocity are considered reasonably 

adequate in accuracy: 

1/2 3

dd

2 2

d, ,( ) ( ).1–v v v v   v w v w  (8) 

Note that at the oscillatory stage of acceleration all 

terms in Formula (8) are time average. The values de-

termined from Formula (8) and obtained by numerical 

calculations roughly coincide.  

For example, their maximum difference, observed in 

the calculations at a time point at which vd=0.999999 (a 

value close to the finite vd =1), is as follows: 1) for 

ε=10
–2

(v–(vvd)
1/2

)=–0.016, w–εγ
3
=0.19, v–(vd–

w2/vd)=0.065; 2) for ε=10
–4

(v–(vvd)
1/2

)=–0.0018, w–

εγ
3
=0.054, v–(vd–w2

/vd)=0.0048. It can be seen that as ε 

decreases this difference becomes progressively smaller, 

and the largest at the maximum value of ε=10
–2

 does not 

exceed 20 %.  

Using (8), for the particle energy at the second stage we 

can get  

2 2 2 6

d1 1 – ,       

from which it follows that upon completion of the ac-

celeration, i.e. at vd=1, energy has a limiting value 

γm=ε
–1/4

. This means that at finite values of ε the maxi-

mum particle energy obtained over the entire accelera-

tion period is limited, and its limiting value is controlled 

by ε. Dependence of the limiting energy γm on ε is plot-

ted in Figure 2. There are two curves, one of which is 

obtained from numerical calculations, the other is the 

dependence represented by the formula γm=ε
–1/4

. Obvi-

ously, they differ little, indicating that the approximate 

solutions found for (8) are absolutely reliable. 

Estimate the time interval in which we can use For-

mula (8). Duration of this interval can be determined 

from the inequality w/vd<1, which can be represented as 

γ
3
. In the initial time interval of the acceleration, 

where vd≈0, γ≈1, this inequality is satisfied for  ; 

and at the end of acceleration, where γm=ε
–1/4

, m=1/ε, 

the inequality also holds as 3 3/4

m m1/ 1 .          

Thus, we can assume that the initial time interval n in 

which Formulas (8) cannot be used is negligibly small 

compared to the total time of acceleration 

m(n ~1<<m=1/ε), and in fact Formulas (8) can be ap-

plied to the entire time interval of particle acceleration.  

In concluding this section, note that at vd →1 it seems 

possible to make use of solutions (5), (6), and the closer vd 

to unity, the greater the confidence in the validity of these 

formulas. It appears, however, that if 1–vdε, the residual 

time res during which a particle can still be accelerated is 

too short: res<1. This means that for the time interval, as 

derived from (6), there is no appreciable increase in energy 

Δγ as Δγ<1, and applying Formulas (5), (6) under favora-

ble conditions of their use (1–vd  ε) unfortunately proves 

to be inefficient. 

 

Figure 2. Parameter ε as a function of limiting energy γm, 
obtained from numerical calculations (solid curve) and from 
γm=ε–1/4 (dashed curve) 
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SOLVING EQUATION  

OF PARTICLE MOTION  
USING ALFVÉN’S METHOD  
AT THE OSCILLATORY STAGE 

At the oscillatory stage, as it follows from numerical 

calculations, the particle dynamics is determined by 

their drift motion in crossed electric and magnetic 

fields. To solve problems with such behavior of charged 

particles, Alfvén once proposed a method that may be 

considered usable in this case. This method appears to 

be very helpful for the problem to solve.  

Alfvén’s method is described in detail in [Dorman et 
al., 1971]. To apply it confidently, we had to find the ε 
value such that the drift approximation, whose fulfill-
ment is necessary for Alfvén’s method, would be still 
valid. As a limiting value of ε, for which, let us agree, 
Alfvén’s method is still applicable, we take ε=0.01 (with 
n≈16, i.e. the field E reaches a value B for a time span 
equal to 16 cyclotron periods). In our opinion, if E in-
creases more rapidly, the use of Alfvén’s method for 
solving this problem is already in doubt. 

Following Alfvén’s method, to solve the equation of 

particle motion as the first step represent the particle 

velocity as a sum of two velocities — the drift velocity 

vd=c[EВ]/В
2
 and the velocity v1: v=vd +v1. Then the 

motion equation takes the form 

d
1

( )( )
.[ / –]

d md m
q c

dt dt


1

vv
v В   

In the next approximation, assuming in the second 

step that the electric field slowly increases with time, 

take into account the effect of the weak force 

d ,
( )d m

dt


 

v
f acting on the particle. Let v1=v2+vР, 

where vР=с[fВ]/(qВ
2
) is the particle drift velocity un-

der the action of the magnetic field B and the force f. 

Given that the vectors f and B are mutually perpendic-

ular, this yields 

2 Р
2

( ) ( )
/ –] .[

d m d m
q c

dt dt

 


v v
v В  

In the third step, putting Р( )
0,

d m

dt




v
 we find the 

solution of the motion equations as v=v2+vd+vР. If we 

confine ourselves to this approximation, the solution 

obtained will characterize the particle motion round the 

Larmor circle at a velocity of v2 and its drift in two di-

rections: the electric drift at a velocity vd in a direction 

perpendicular to the electric and magnetic fields and the 

drift at a velocity vP in the direction of the electric field 

vector E. Note that in a linearly increasing electric field 

in this step the solution v=v2 +vd+vР, we have obtained 

using Alfvén’s method, for nonrelativistic particles sat-

isfies the equation of their motion (about the existence 

of such a solution in the nonrelativistic case see [Moro-

zov, Solov'ev, 1963]). As you can see, the solution for 

the velocity components v=ε, w=ε (at v2=0) found by 

Alfvén’s method and satisfying the equation of particle 

motion, is a time averaged exact solution of (3). 

The approximate solution we have derived suggests 

that due to the particle drift at a velocity vP the total 

particle energy γmc
2 

will change; it can be found from 

the relation  

2 2

Р

2d

 

– .

[ ] ( )

( )

d
mc q q с qВ

dt

d
mqc В

dt


  

 
  

 

Ev E fВ

v
E В

  

Substituting vd=c[EB]/B
2
 in it, for the vector prod-

uct d( )d

dt

 
 
 

v
В  we get  

2d –
(

.
)d d d

с В
dt dtdt

  
   



 
 
  

v Е
В Е   

Hence, in the increasing electric field the energy 

increment can be determined from the equation 

 
2

2 d
d2 1– .

dvd
v

dt dt


   (9) 

In the general case, for the approximation of interest 

vd<1 we solve Equation (9) as follows 

 
–1/2

2

d1– .v   (10) 

In the particular case, for vd<<1 Equation (9) is 

solved as follows  

 2

dexp 2 .v   (11) 

Thus, for small vd<<1, according to (11), the total 

energy increases exponentially as a function of vd. With 

moderate vd, but when vd<1, the energy increase is de-

termined by Formula (10), said formally, as follows 

from (10), for vd→1 the energy γ increases indefinitely. 

When vd → 0, (10) and (11) give the same result 

2

d1 2.v     

From (10) it follows that the solution of relativistic 

equation of motion (1) is the magnitude of the drift ve-

locity: v=v d. If we substitute the formally found solu-

tion v=v d into motion equation (1), we obtain that it is 

satisfied if the condition d( )
0.

d m

dt




v
 holds. The ful-

fillment of the condition means that in this case 

v=v d,
 d3 0,

d m v

dt


   w  and ε=0. We can con-

clude that with ε→0 the complete particle acceleration 

cycle is accomplished at the oscillatory stage, i.e. during 

drift motion of particles in which the time dependence 

of particle energy is determined by Formula (10). 

 

APPLICABILITY 

OF THE RESULTS 

FOR PULSED PROCESSES 

IN THE HELIOSPHERE 

In this section, we give some ideas about how the re-

sults can be used. Let us address the problem of CR 

modulation in the heliosphere, mentioned in Introduc-
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tion. Two problems should be considered here: 1) the 

change in CR energy when passing a heliospheric re-

gion whose electric field varies with time; 2) to deter-

mine the mechanism behind the time-varying electric 

field in the heliosphere. For problem 1 we assume that 

the density of CR particles (mostly protons) is negligi-

ble with respect to the particle density in heliospheric 

plasma. This condition allows us to analyze the dynam-

ics of charged particles in electromagnetic fields in the 

one-particle approximation, presented in this paper. 

Thus, the results obtained in this work can be confident-

ly used to solve the problems at hand. For problem 2 we 

suppose that the increasing electric field is induced dur-

ing motion of spatially bounded plasma streams ejected 

from the Sun and moving in the curved magnetic field 

of the heliosphere (Parker field).  

Consider such a scenario. Let there be a plasma region 

in which on the background of a mean magnetic field B an 

increasing electric field perpendicular to the magnetic field 

appears. We are interested in the energy obtained by 

charged particles present in this region. In such a situation, 

to use the results, obtained in this work, for estimating the 

energy, it is necessary to know first the time tm it takes the 

electric field to increase from zero to a maximum value Em. 

Then the parameter ε, associated with the rate of the field 

increase, has the form  m m .ВЕ B t    Assume further 

that in the direction of the particle’s electric drift the size of 

the region we identified should be at least ctm, and moreo-

ver the conditions ωВ t m<<1, Еm /B≤1 should also be met. 

Then, knowing ε, for Em /B≈1 from γm=ε
–1/4

 we can esti-

mate the limiting energy transferred to a particle through-

out the acceleration period. If Em /B<0.9, to assess the lim-

iting energy we can use the formula  
–1/2

2

d1– ,v   

where vd=Em /B. 

Let us discuss the basic processes in the heliosphere, 

which lead to CR acceleration. According to [Dvor-

nikov et al., 2013], in regular electromagnetic fields of 

the heliosphere the acceleration of CR energetic parti-

cles is generally due to three reasons: 1) particle drift 

toward the heliospheric electric field; 2) time variation 

of the magnetic field (betatron acceleration); 3) time 

variation of the electric field. In the first case, a charged 

particle can gain energy up to 200 MeV [Dvornikov et 

al., 2013]. In the other two cases, to assess the particle 

energy resulting from acceleration, we turn to specific 

events occurring in the heliosphere in October–

November 2003. These events have been analyzed in 

[Dvornikov et al., 2013] (see Figure 3 therein). At beta-

tron acceleration, the CR energy change in these events 

is maximum when β=2. For CRs entering the alternating 

magnetic field of the heliosphere with an energy 100 

MeV – 1 GeV, the maximum particle energy due to the 

betatron acceleration varies from 40 to 400 MeV. To 

estimate the energy change in the case of increasing 

electric field, as follows from aforesaid Figure 3, the 

value α=E
2
/B

2
 varied from 0.2 to 0.24. Hence, the ki-

netic energy of particles  
–1/2

2 2 21– 1K mc E B  
  

 

varied from 110 to 150 MeV. You can see that all the 

three acceleration mechanisms make a comparable and 

quite significant contribution to the CR energy change. 

 

MAIN RESULTS 

AND CONCLUSIONS 

An approximate analytical solution has been found 

for the relativistic equation of particle motion in the 

spatially uniform electromagnetic field, whose structure 

is defined by the stationary magnetic field B and by the 

electric field strictly perpendicular to it, which linearly 

increases with time from zero to a maximum value 

Em=B. The solution is represented by fairly simple for-

mulas (8), which define the dependence of particle ve-

locity on acceleration time. For the entire period of elec-

tric field increase to B, particles are shown to accelerate 

to a finite energy that is determined by ε, associated 

with the rate of electric field increase, and the smaller 

the rate, the higher the limiting energy. 

For the range of ε change (10
–2

>ε>10
–7

) we take 

here, it has been found that if Em /B<0.9, the dynamics 

of relativistic particles is determined by the relations 

obtained from solutions of the motion equation by the 

method proposed by Alfvén. In this case, the maximum 

kinetic energy 

 
–1/2

2 2 2

m m1– 1 .K mc E B 
  

   

We believe that these results are important for under-

standing the dynamics of charged particles when moving in 

electromagnetic fields and are of general physical interest. 

Formulas (8) and (10) can be used to find particle energy in 

various pulsed processes in space plasma, which occur in 

an electromagnetic field similar to that considered in this 

work.  
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