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Abstract. In this paper, we derive a divergent form of 
the force balance equation for collisionless plasma in the 
quasineutrality approximation, in which the electric field 
and current density are excluded. For a stationary spatially 
one-dimensional current sheet with a constant normal 
component of the magnetic field and magnetized electrons, 
the general form of the force balance equation has been 
obtained for the first time in the form of a conservation 
law. An equation in this form is necessary for the correct 
formulation of boundary conditions when modeling 
asymmetric current sheets, as well as for the control of the 
stationarity of the numerical solution obtained in the mod-

el. Furthermore, the fulfillment of this equation is consid-
ered for two types of stationary configurations of a thin 
current sheet, which are obtained using a numerical model. 
The derived equation makes it possible to develop models 
of asymmetric current sheets, in particular current sheets 
on the magnetopause flanks in the magnetotail. 

Keywords: collisionless plasma, Vlasov equation, 
current sheet, numerical simulation, Earth’s magneto-
sphere, magnetized electrons 

 
 

 

 

INTRODUCTION 
Force balance equations are needed to study proper-

ties of multiscale spatially inhomogeneous structures in 
collisionless space plasma, specifically to construct ana-
lytical and numerical models, as well as to analyze 
measurement data. An example of such structures is 
current sheets (CS), which play an essential role in 
physics of collisionless plasma of the magnetosphere 
and solar wind [Zelenyi et al., 2011, 2016]. They appear 
between the space regions where plasma parameters 
vary widely, and at the boundaries of regions with op-
positely directed magnetic field lines. CS is commonly 
referred to as thin if its thickness is comparable to the 
gyroradius of thermal ions of the ambient plasma. 

Thin current sheets (TCS) have been discovered in 
recent decades due to satellite studies of interplanetary 
and circumplanetary space of the Solar System [Zelenyi 
et al., 2011; McPherron et al., 1987; Sergeev et al., 
1993; Runov et al., 2006; Baumjohann et al., 2007; Ar-
ons et al., 2011]. In Earth’s magnetosphere, TCS con-
stantly exists at the magnetopause and also forms in the 
near magnetotail during the growth phase of a magneto-
spheric substorm. An important feature of the latter as 
well as of most observed TCS is the existence of a nor-
mal magnetic field component, which makes them con-
siderably different from sheets without the normal com-

ponent [Speiser, 1965; Ashour-Abdalla et al., 1994; 
Zelenyi et al., 2011, 2016], with a given set of stationary 
analytical solutions — Harris’s solution [Harris, 1962] and 
others [Kocharovsky et al., 2016, 2019]. 

TCS in the near magnetotail decays at the beginning 
of the substorm expansion phase, but the mechanism of 
its decay has not been fully elucidated and is still a hot 
topic of research over recent decades. To study possible 
mechanisms of TCS decay (e.g., owing to the develop-
ment of the tearing mode [Somov et al., 1993]), it is 
necessary to examine in detail their stationary configu-
rations, which for TCS with the normal component in 
the general case can be obtained only from numerical 
simulation; and in special cases, using approximate ana-
lytical models, in which the force balance equations are 
used to set boundary conditions and to check the cor-
rectness of the numerical solution. 

In this paper, we briefly consider how force balance 
equations are derived for quasineutral collisionless plasma. 
We also define the form of one of these equations as a con-
servation law for a stationary spatially one-dimensional 
current sheet with a constant normal magnetic field com-
ponent and magnetized electrons. We exemplify the use of 
the last equation in a numerical model of TCS. 

Note that the development of numerical and approx-
imate analytical models of stationary TCS with the 
normal magnetic field component has a long history, 
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which is described in the reviews [Zelenyi et al., 2011, 
2016] and in [Mingalev et al., 2018]. Analytical models 
represent protons in the quasi-adiabatic approximation 
[Kropotkin et al., 1995], and the most advanced models 
describe electrons in the so-called semi-fluid approxi-
mation (see, e.g., [Sitnov et al., 2000; Zelenyi et al., 
2011]). The most advanced numerical models for pro-
tons use the particle-in-cell method to solve the station-
ary Vlasov equation and, as do analytical models, take 
into account the contribution of electrons in the semi-
fluid approximation [Bykov et al., 2008, 2016]. These 
models considered symmetric TCS configurations for 
which boundary conditions were set from symmetry 
conditions, and the force balance was not addressed. 

In our TCS model [Mingalev et al., 2018], the analyti-
cal description of magnetized electrons has been improved 
and has become totally kinetic. They are described by a 
Maxwell-Boltzmann distribution, which, depending on the 
formulation of the problem, is either an exact or approxi-
mate solution of the Vlasov equation in the drift approxi-
mation. In our model, the Vlasov equation for ions is 
solved numerically by the method of characteristics, thus 
allowing us to apply GPU-based massive parallel computa-
tions to the simulation. The findings of this work permit 
the use of our model for studying asymmetric TCS. 

 
1. FORCE BALANCE EQUATIONS 

IN COLLISIONLESS PLASMA 
Consider the derivation of a force balance equation — 

a total plasma momentum flux equation in the quasineu-
trality approximation in which the electric field and current 
density are excluded and the maximum possible number of 
terms is given in the divergent form. This equation can be 
written in two forms: through current densities of plasma 
components or through their hydrodynamic velocities. 

Denote the magnetic induction and electric field 
strength vectors, which depend on spatial coordinates 

( )1 2 3
3, , Tx x x= ∈x   and time t, by B(x, t) and E(x, t) 

respectively. Designate the scalar and vector products of 
vectors u and v in space 3.  as ( )⋅u v  and [ ]×u v  
respectively. We also use the unit vector along the mag-
netic field ( ), t B=b x B  and the electric drift velocity 

( ) [ ] 2, ,E t B= ×v x E B  where .B= B  For an arbitrary 
vector field a(x,t), we introduce its field-aligned compo-
nent a||=(a∙b), and longitudinal a||=A ||b and orthogonal 
a^=a–a|| components with respect to the magnetic field. 

Assume that plasma contains K ion types and elec-
trons. Denote by ( )α , ,f t x v  the distribution function of 
the plasma component of the type α(α=1, ..., K for ion 
components, α=e for electrons), which depends on t, 

3∈x  , and ( )1 2 3
3, , .Tv v v= ∈v   For particles of type 

α, qα and mα imply a charge and mass of the particles; 
( )α ,n tx  and ( )α , tj x , their concentration and current 

density. In this case, the proton charge q1 is represented 
by e, i.e. for electrons .eq e= −  

In the SI system, the system of Vlasov equations 
along with concentration and current can be written as 
(1.1)–(1.3) 

[ ]( )α α α α

α
0,

1, , , eα

f f q f
t m

K

 ∂ ∂ ∂ + ⋅ + + × ⋅ =  ∂ ∂ ∂   
=

v E v B
x v



 (1.1) 

( ) ( )

( ) ( )

3

3

1

α α

α α
α

, , , ,

ρ , , ,

ρ ρ ,

K

i

i e

n t f t d

t q n t

en
=

=

=

= −

∫

∑

x x v v

x x



 (1.2) 

( ) ( )

( ) ( )

3

3
α α

1

α

α
α

, , , ,

, , , .
K

i i e

t q f t d

t t
=

=

= = +

∫

∑

j x v x v v

j x j x j j j

  (1.3) 

Hereafter, ( )ρ ,i tx  and ( ),i tj x  stand for the cumulative 

ion charge and current densities; ( ) ( )ρ , , ,t tx j x , for the 
total charge and current densities.  

Use for each plasma component α=1, ..., K, e the hy-
drodynamic velocity ( )α , ,tu x  the stress tensor 
 ( )α , tΠ x , and the pressure tensor  ( )α , ,tP x , as well as 

the total stress tensor of ions  ( ),i tΠ x  and the total 

pressure tensor of ions  ( ),i tP x , which are determined 
by formulas 

( ) ( ) ( )( )
 ( )

( )( ) ( )( ) ( )

 

3

3

1

α α α α

α

α α α α

α
α

, , , ,

,

, , , , ,

,
K

i

t t q n t

t

m t t f t d

=

=

=

= − ⊗ −

=











∫

∑

u x j x x

P x

v u x v u x x v v

P P



(1.4) 

 ( ) ( )

 

3

3

1

α α α

α
α

, , , ,

.
K

i

t m f t d

=

= ⊗

=

∫

∑

Π x v v x v v

Π Π

  (1.5) 

Hereafter, ⊗U V  designates the diadics formed by the 

vectors U and V in space 3 ,  whose Cartesian compo-
nents are determined by the respective components of 
its constituent vectors from Formula 
( ) , .k lk l U V⊗ =U V  Note that Formula 

 

α α α α α α ,m n= + ⊗Π P u u  (1.6) 

is valid, which represents the decomposition of the 
stress tensor αΠ  into the sum of the pressure tensor 


αP  and the inertia tensor α α α α .m n ⊗u u  
Vlasov equations (1.1) for each plasma component 

α=1, ..., K, e yield a momentum flux equation, which 
can be represented in two forms: as the current density 

[ ] 

2
α α α α α

α α
α α α

div ,
q n q q

t m m m
∂

= − × −
∂
j

E B j Π  (1.7) 

and as the hydrodynamic velocity 
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[ ] 

α α
α α α α α αdiv ,

d
m n q n

dt
= − × −

u
E B j P  (1.8) 

where the traditional designation is used for the total 
time derivative of the arbitrary function ( ), tΦ x  along 
current lines of each plasma component: 

( ) ( ) ( )( ) ( )α
α

, ,
, , .

d t t
t t

d t t
Φ ∂Φ

= + ⋅ Φ
∂

x x
u x x∇  (1.9) 

Derive two divergent forms of the force balance 
equation, which follow from the momentum flux equa-
tion in the form of (1.7) and (1.8) respectively. The 
summation of the momentum flux equations in the form 
of (1.7), multiplied by the ratio α α ,m q  over all plasma 
components, and then the consideration of determina-
tions of the charge density in (1.2), the total current in 
(1.3), and the total stress tensor of ions in (1.5) give  

[ ]  

e

1

e α α

α α

eiρ div div .

Km m
e t q t=

∂ ∂
− + =

∂ ∂

= − × − −

∑j j

E B j Π Π
 (1.10) 

Similarly, the summation of the momentum flux 
equations in the form of (1.8) for all plasma components 
α=1, ..., K, e in view of determining the charge density 
and the ion current in (1.2) and (1.3), as well as the total 
pressure tensor of ions in (1.4 ) results in  

[ ]  

e e
e e

1

α α
α α

α

eiρ div div .

Kd d
m n m n

dt dt=

+ =

= − × − −

∑u u

E B j P P
 (1.11) 

The quasineutrality condition ( )ρ , 0t ≡x  and result-
ing biasing equality to zero allow us to eliminate the 
electric field from these equations, and to express the 
current density as 0rot μ=j B  from the Ampere equa-
tion. As a result, in view of the representation of the 
term [ ]rot×B B  in the divergent form 

[ ] 21rot div ,
2

B × = − ⊗ 
 

B B I B B   

( I  is the unit tensor), Equations (1.10) and (1.11) yield 
force balance equations in divergent forms 

 

e

1

2

0 0

e α α

α α

ei
1 1div ,
μ 2μ

Km m
e t q t

B

=

∂ ∂
− + =

∂ ∂

 
= ⊗ − − − 

 

∑j j

B B I Π Π

 (1.12) 

 

e e
e e

1

2

0 0

α α
α α

α

ei
1 1div ,
μ 2μ

Kd d
m n m n

dt dt

B

=

+ =

 
= ⊗ − − − 

 

∑u u

B B I P P

 (1.13) 

which are the main result of this section. 
Note that on the right side of Equation (1.12) is the 

difference between the bulk density of magnetic tension 

force ( ) ( )
0 0

1 1 div
μ μ

⋅ = ⊗B B B B∇  and the divergence 

of the sum of the magnetic pressure ten-
sor ( )( )2

02μB I , the total stress tensor of ions, iΠ  and 

the stress tensor of electrons e.Π  An imbalance be-
tween these forces violates the stationarity of the pro-
cess. A similar imbalance on the right side of Equation 
(1.13) implies the appearance of the bulk density of the 
force acting on the plasma. 

In [Mingalev et al., 2020], we have shown that in the 
case of collisionless plasma consisting of nonmagnet-
ized ions and magnetized electrons, the electrons are in 
full force balance: 

( )e e e
e e e0 div .

d
e n

dt t
∂

= ⇔ = ⊗
∂

u j
u u  (1.14) 

Substituting this condition into (1.12) reduces it to 
the form  

 

1

2

0 0

α α

α α

ei
1 1div ,
μ 2μ

K m
q t

B

=

∂
=

∂

 
= ⊗ − − − 

 

∑ j

B B I Π P

 (1.15) 

where, as compared to (1.12), on the left side the term 
with the time derivative of the electron current cancels 
out, and on the right side the electron stress tensor eΠ  is 

replaced by their pressure tensor eP , which is defined by 

 ( )ee e e ,p p p= + − ⊗P I b b

⊥ ⊥

 (1.16) 

where ep


 and ep ⊥  are field-aligned and transverse 
pressure of electrons. Substituting (1.14) into (1.13) 
reduces it to the form  

 

1

2

0 0

α α
α α

α

ei
1 1div ,
μ 2μ

K d
m n

dt

B

=

=

 
= ⊗ − − − 

 

∑ u

B B I P P

 (1.17) 

where, as compared to (1.13), on the left side the inertial 
term of electrons cancels out.  

Compared to Equation (1.12), the physical meaning 
of Equation (1.15) has slightly changed. On its right 
side is the difference between the bulk density of mag-

netic tension force ( ) ( )
0 0

1 1 div
μ μ

⋅ = ⊗B B B B∇  and 

the divergence of the sum of the magnetic pressure ten-
sor ( )( )2

02μB I , the total stress tensor of ions 

 

1
αi

α

K

=

= ∑Π Π , and the pressure tensor of electrons e.P  

Equations (1.15) are suitable for setting out the bounda-
ry conditions in models of stationary asymmetric cur-
rent sheets.  

 
Note that in the case of collisionless plasma consist-

ing of protons and magnetized electrons, force balance 
equations (1.15) and (1.17) take the form 
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 

2

0 0

p p

p e
1 1div ,
μ 2μ

m
e t

B

∂
=

∂

 
= ⊗ − − − 

 

j

B B I Π P

 (1.18) 

 

p p
p

2

0 0

p

p e
1 1div ,
μ 2μ

d
m n

dt

B

=

 
= ⊗ − − − 

 

u

B B I P P

 (1.19) 

and are divergent forms of the momentum flux equation 
(motion equation) for protons in which the electric field 
and current density are omitted. 

 
2. FORCE BALANCE EQUATIONS 

IN ONE-DIMENSIONAL 
CURRENT SHEET 

Consider force balance equations (1.12) and 
(1.15) for a stationary spatially one-dimensional cur-
rent sheet in which all functions depend only on one 
spatial coordinate z across the layer. Depending on 
the situation, we denote the vectors of the Cartesian 
coordinate system by ex, ey, and ez, as well as the co-
ordinate vector components 3

x y zx y z= + + ∈x e e e y  
and the velocity vector components 

3.x x y y z zv v v= + + ∈v e e e y  
In the CS of interest, the magnetic field has a given 

constant normal component zB сonst≡  and self-
consistent components Bx(z) and By(z), and the electric 
field has one self-consistent component Ez(z):  

( ) ( )

( ) ( )
( ) ,

φ
( ) ,

x x y y z z

z z z

z B z B z B

d z
z E z

dz

= + +

= = −

B e e e

E e e
 (2.1) 

where φ(z) signifies a scalar potential. In this case, (1.12) 
yields a vector force balance equation in the form of a con-
servation law for a spatially one-dimensional current sheet 

( ) ( ), , , , , , , ,

2

, , , ,
0 0

.
2μ μ

i x z e x z x i y z e y z y

z
i z z e z z z

BB сonst

+ + + +

 
+ + + − ≡  
 

Π Π e Π Π e

BΠ Π e
 (2.2) 

The equation in this form is needed to derive boundary 
conditions in numerical models of thin current sheets 
and to determine the stationarity of the resulting CS 
configuration. 

Similarly, from stationary equation (1.15) follows a 
vector force balance equation in the form of a conservation 
law for a stationary spatially one-dimensional current sheet 

( ) ( )

2

, , , , , ,
0

0
2

0

e

e e

2μ

μ
1 . 2.3

μ

i x z x i y z y i z z z

z

B

B сonst
B

p

p p

 
+ + + + +  

 
 

+ − − ≡ 
 

Π e Π e Π e

B

⊥

⊥

 
 

For isotropic electrons ( ) ( ) ( )e ez z zp p p≡ ≡⊥

, they 
contribute only to the balance along the Z-axis orthogo-
nal to the sheet, and Equation (2.3) takes the form: 

, , , ,

2

, ,
0 0

e .
2μ μ

i x z x i y z y

z
i z z z

BB сonstp

+ +

 
+ + + − ≡  
 

Π e Π e

BΠ e
 (2.4)

 

This equation gives scalar force balance equations for 
each of the coordinate axes X, Y, and Z respectively, 

( ) ( ), ,
0

1 ,
μi x z z xz B B z сonst− ≡Π  (2.5) 

( ) ( ), ,
0

1 ,
μi y z z yz B B z сonst− ≡Π  (2.6) 

( ) ( ) ( )2
, ,

0
e

1 .
2μi z z z B z z сonstp+ + ≡Π  (2.7) 

 
3. EQUATIONS OF NUMERICAL 

MODEL OF SPATIALLY 
ONE-DIMENSIONAL TCS 

Consider the most general version of the model of 
stationary spatially one-dimensional current sheet with 
magnetized electrons, in which the magnetic field has two 
self-consistent components and one constant normal 
component and which allows asymmetric configurations as 
well as a plasma flow through the sheet.  

This model version is a generalization of the initial 
version [Mingalev et al., 2018], in which the magnetic 
field has only one self-consistent shear symmetric 
component.  

The model has a dimension of 1D3V and makes the 
following assumptions. 

1. All functions depend only on one spatial coordinate 
z across the sheet; the simulation region is a strip { }.z L<  

2. The magnetic and electric fields are given by (2.1), 
above and below the region { }| |z L<  the magnetic field 
is assumed to be constant; and the electric field, zero. 

3. The sheet is supported by field-aligned counter 
ion flows. The distribution function ( )( )

α ,f z± v  of ions of 
this type in incident plasma flows at the boundary of the 
calculation domain has the form of a shifted Maxwellian 
distribution with a hydrodynamic mean speed 

( )
( ) ( )
α α( ) ,

| | | | D
z V

z

±
± ±

±= −
BU
B

, which has a value ( )
αDV ±  and is 

directed along magnetic field lines toward the sheet, 

( )

( ) ( )

( )

( )
α

( ) 2( )α
α3 2( )( )

TαTα

( )

1exp ,
22π

0.
| |

f

n

VV

z
z

±

±
±

±±

±

=

 
 = − −  
 

⋅ <

v

v U

B v

 (3.1) 
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Here, ( )
αn ±  is the density, ( )

αT ±  is the temperature in 

electron volts, ( ) ( )
Tα α αV eT m± ±=  is the thermal veloci-

ty in these flows. The superscript (+) indicates a down-
flow; and (–), an upflow.  

In the model, the ion components are described by 
stationary Vlasov equations, which are solved numeri-
cally. Magnetized electrons are described by a station-
ary Vlasov equation in the drift approximation (see 
[Rudakov, Sagdeev, 1958; Morozov, 1963; Volkov, 
1964; Kalsrud, 1983; Ilgisonis, 1993; Mingalev et al., 
2020]), and their current density, according to the drift 
theory, is given by Formula  

( ) ( ) ( )

( ) ( ) [ ]
e

e
e e

e e

,

Ez j z z e n

B B
p

p p

= − +

× ⋅  × + − +

j b

b b b b

v


⊥
⊥

∇ ∇


 (3.2) 

The electric field is determined from the condition of 
the field-aligned force balance of electrons  

( ) ( )e
1 div

e
E

e n
= ⋅ = − ⋅ =b E b P



  

( )( ) ( )( )e e e
e

1 ln ,B
e n

p p p= − ⋅ − ⋅b b
 ⊥ ∇ ∇  (3.3) 

which in this case takes the form 

( )
i

e ee1 .
ρz

d dBE
dz B dz

p pp −
 = − +
 
 





⊥  (3.4) 

Fulfillment of the condition div 0=j  in the problem 
with fields of type (2.1) is equivalent to the absence of 
the z component in the total current density ( ) 0,zj z ≡ , 
which is provided by the neutralizing field-aligned elec-
tron current, i.e. the total current density is defined by 

( ) ( ) ( )
( ) ( ) ( ) ( )e

ei

ei ,

z z z

z z j z z

= + =

= + +

j j j

j j b
⊥

 (3.5) 

where the ion current density ji(z) is computed numeri-
cally. Substituting (3.5) into the equality ( ) 0zj z ≡  al-
lows us to derive the field-aligned electron current den-
sity component  

( )
( ) ( )( )
( )( )

( ) ( ) ( )( )

e
ei

ei ,

z

z

z
z

z

z

j z j z
j z

z

B z
j z j z

B

+
= − =

⋅

= − +

b e

⊥

⊥

 (3.6) 

which gives the following formulas for the electron cur-
rent density and the total current density: 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

e e ei

e ei i

,

.

z
z

z
z

z

z

z
z z j z j z

B
z

z z z j z j z
B

= − +

= + − +

B
j j

B
j j j

⊥ ⊥

⊥ ⊥

 (3.7) 

Thus, the Ampere equation 0rot μ=B j  in the model re-
duces to a system of two first-order ordinary differential 

equations relative to the self-consistent magnetic field 
components 

( ) ( ) ( ) ( )0 0μ , μ ,yx
y x

dB zdB z
j z j z

dz dz
= = −  (3.8) 

in which the right side may depend on Bx(z) and By(z), 
as well as on their derivatives.  

Substituting Formulas (3.6) and (3.4) in (3.2), in 
view of (2.1), allows us to represent the electron current 
density as 

( )
( ) [ ]2

e e
e i .z

z
z

dz j
B dz B

p p −
 = − − ×
 
 

Bj B e⊥  (3.9) 

From this formula it follows that for isotropic electrons 
e e ep p p= =⊥

 they can give only a neutralizing field-
aligned current 

( ) ( ) ( )

( ) ( ) ( ) ( )

e i

i i

,

.

z

z

z

z

z
z j z

B
z

z z j z
B

= −

= −

B
j

B
j j

 (3.10) 

For the Vlasov equation describing magnetized elec-
trons in the drift approximation the characteristic system 
is a system of guiding center motion equations (see 
[Rudakov, Sagdeev, 1958; Morozov, 1963; Volkov, 
1964; Kalsrud, 1983; Ilgisonis, 1993; Mingalev et al., 
2020]). For this system of equations according to the 
drift theory, the magnetic moment ( )μ , Lz v  and the 

total energy (Hamiltonian) ( ), , ,LH z v v


 which are de-
fined by 

( ) ( )

( ) ( ) ( )

2
2

2 2 2 2e

μ , ,
2

, , φ ,
2

L
L

L L

vz v
B z

m
H z v v v v e z

=

= + −
 

 (3.11) 

are approximate independent integrals. If the magnetic 
field of type (2.1) has no shear component ( ) 0,yB z ≡ , the 

functions ( )μ , Lz v  and ( ), , LH z v v


 are exact integrals. 
In this case, the general solution of the stationary Vlasov 
equation in the drift approximation for electrons has the 
form of an arbitrary function of these two integrals: 

( )
( ) ( )( )2 2 2

e , ,

μ , , , , ,

L

L L

F z v v

z v H z v v

=

= F





 (3.12) 

where Φ(μ, H) is a sufficiently smooth function of two 
variables. If the shear magnetic field component 

( ) 0,yB z ≠  the function of type (3.12) is an approximate 
solution. The simplest variant is the special case when 
electrons in a current sheet and outside it have the 
Maxwell-Boltzmann distribution in the stationary mag-
netic and electric field, i.e. the distribution function of 
their guiding centers may be represented as 
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( ) ( )

( )
( )

( )

00
3

0Te0

2 2
0 0

2 2
T 0 T 0

e
e

e e

1 γ φ
, , exp

2π

γ
exp exp 1 ,

2 2

L

L

n z
F z v v

TV

v Bv
B zV V

 +
= ×  

 

    
× − − +           





 (3.13) 

where the constants 

( ) ( )

( )
( ) ( )

( )

0 0 0 0

0 0
0 0

0

e e

e

, ,

γ γ ,

B B z n n z

z z
z

z
p p

p

= =

−
= =  ⊥

⊥

  

are values of the respective functions at a point z0 of 
the sheet, i.e. γ0 is the dimensionless anisotropy pa-
rameter (γ0=0 in the isotropic case), Te0 is the elec-
tron temperature in electron volts at this point, and 

Te0 e0 eV eT m=  is the corresponding electron ther-
mal velocity. Distribution function (3.13) gives the 
following expression for the electron density in terms 
of the scalar potential and magnetic field: 

( ) ( ) ( )
( ) ( )

( )( )
( )0 0

00 0

e i

e

1 γ φ
exp ,

γ

n z n z n z

n B z z
TB z B

= = =

+  
=  

+  

 (3.14) 

which expresses the potential through the electron den-
sity and the magnetic field: 

( )
( )( )

( ) ( )
( )0 0

e0
0 0

γ
ln .

1 γ
B z B n z

z T
B z n

 +
ϕ =   + 

 (3.15) 

Substituting (3.14) in the formula for the longitudinal 
pressure yields 

( ) ( ) 0e e .z en z Tp =


 (3.16) 

The first expression suggests that the longitudinal elec-
tron temperature component is constant in the sheet: 

( )
( )
( )

( )
( )

0
e 0

e e
e

e
.

z en z T
T z T сonst

en z en z
p

= = = ≡



 (3.17) 

Hereinafter, the longitudinal temperature is therefore 
considered constant 0e e .T T сonst= ≡



 
Distribution function (3.13) also gives the following 

formula for the lateral pressure:  

( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

2

0
0 0

0 0 0 0

e

e
e

e e

exp
γ

.
γ γ

z

z B z
eT n

T B z B

en z T B z p z B z
B z B B z B

p =

  ϕ
= =    +  

= =
+ +





 

⊥

 (3.18) 

From this formula follows an expression for the orthog-
onal electron temperature in the sheet 

( ) ( )
( )

( )
( )( )

e
e

0 0

e ,
γ

T B zz
T z

en z B z B
p ⊥

⊥ = =
+

  (3.19) 

and for the electron pressure difference: 

( ) ( )
( )

( )( )
( )

( )( )

0 0

0 0

0 0

0 0

e
e e

e

γ
γ

γ
.

γ

B z
z z

B z B

eT B n z
B z B

p
p p ⊥− = =

+

=
+







 (3.20) 

Substituting this expression into (3.9) and then substitut-
ing the result into (3.7) lead to the following expressions 
for current density components  

( ) ( ) ( ) ( )

( ) ( )
( )( ) ( )

i

0 0 2
0 0

i

e γ ,
γ

x
x x z

z

y

B z
j z j z j z

B

B z zdeT B
dz B z B B z

n

= − −

 
−   + 



 (3.21) 

( ) ( ) ( ) ( )

( ) ( )
( )( ) ( )

i i

0 0 2
0 0

e γ .
γ

y
y y z

z

x

B z
j z j z j z

B

B z zdeT B
dz B z B B z

n

= − +

 
+   + 



 (3.22) 

Note that Formulas (3.18), (3.19) suggest that if 
electrons are isotropic outside of the current sheet (γ 
0=0), they are isotropic inside the sheet as well, their 
temperature is constant: eT сonst≡ , and their current 
density and the total current density are defined by 
Formulas (3.10). In this case, Formulas (3.14)–(3.19) 
take the following form: 

( )

( )
( )

e

2 2
0

3 2
e TeTe

, ,

exp exp ,
22π

L

L

F z

v vn z
T VV

v v =

 +ϕ 
= −       





 (3.23) 

( ) ( ) ( ) ( )e e
0

eln , .
n z

z T z e n z T
n

p
 

ϕ = = 
 

 (3.24) 

 
4. EXAMPLES OF FORCE BALANCE 
 IN A THIN CURRENT SHEET 

As an example, consider two types of stationary con-
figurations of spatially one-dimensional TCS with a 
given constant normal magnetic field component, in 
which there is only one ion component — protons and 
electrons are isotropic, i.e. the orthogonal part of their 
current density, in view of (3.9), is absent: ( )e 0.z ≡j ⊥  

The main features of the technique for numerical so-
lution of the stationary Vlasov equation are discussed in 
detail in [Mingalev et al., 2018]. In this case, in the 
course of the numerical solution of the Vlasov equation 
for protons, we calculated their density n(z)=ni (z), the 
current density, and the stress tensor components de-
fined in (1.5). The electric field and the pressure were 
calculated by Formulas (3.24). 

Input parameters were taken typical for CS of the 
near tail of Earth’s magnetosphere in the substorm 
growth phase [Sergeev et al., 1993, 1996; Runov et al., 
2006; Baumjohann et al., 2007; Artemyev, Zelenyi, 
2013; Artemyev et al., 2013; Frank et al., 2016; Malova 
et al., 2017]. The halfwidth of the simulation region 
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L=RE=6400 km, the spatial grid spacing Δz=RE/640=10 
km. The electron temperature was assumed to be Te=0.5 
keV. The temperature of protons in flows forming CS 
was the same above and below, Tp0=4 keV, which 
yielded a thermal velocity value 

Tp0 p0 p 619V eT m= ≈  km/s. The hydrodynamic ve-
locity in these flows was deemed equal on both sides 
( ( )

D DV V± = ) and was given by VD=δ VTp0; a set of values 
of the dimensionless parameter δ was also considered. 
The value of the magnetic field x component above and 
below the sheet was assumed to be equal: 

0
( ) ( )

0 0 20xx xB B B+ −= = =  nT, and the magnetic field z-
component normal to the sheet Bz=Bx0 / 2=10 nT.  

4.1. Symmetric configurations without mag-
netic field shear 

Configurations of this type are best known and have 
been extensively studied using analytical and numerical 
models [Zelenyi et al., 2011, 2016; Mingalev et al., 
2018]. Figure 1 exemplifies the configuration of the first 
type for which the magnetic field in the sheet has two 
components — self-consistent Bx(z) and constant Bz — 
and is symmetric ( ) ( ).x xB z B z− ≡ −  The electron cur-

rent density is equal to zero: ( )e 0z ≡j , and the total 
current density has only the y component 
( ) ( )i .y yj z j z=  
Figure 2 shows a force balance in nanopaskal for the 

TCS configuration in Figure 1. Panel a demonstrates the 
balance along the X-axis, which is defined by Equation 
(2.5). The force balance is seen to be fulfilled with good 
accuracy, and the constant on the right side of Formula 
(2.5) is equal to zero. Panel b shows the balance along 
the Y-axis, which is defined by Equation (2.6). In the 

case considered, 0yB ≡  and the constant on the right 
side of Formula (2.6) is also zero. Panel c depicts the 
balance along the Z-axis, which is defined by Equation 
(2.7). In view of 0yB ≡  and zB сonst≡ , this equation 
can be written as 

( ) ( ) ( )2
, ,

0
e

1 .
2μi z z xП z B z z сonstp+ + ≡   

The red line indicates that this equation is satisfied 
with very high accuracy. The electron pressure pe(z) 
(brown line) is seen to make though a relatively small 
but very important contribution to the precise fulfill-
ment of the force balance equation in the current sheet 
because it compensates the sum (green line) of the 
proton stress tensor and the magnetic pressure for the 
local minimum in the center of the sheet. For other 
values of the parameter δ, the force balance is fulfilled 
in a similar way. 

Thus, the force balance in the numerical model of 
TCS due to the smooth and accurate approximation of 
the second moments of the proton distribution function 
is fulfilled with very high accuracy. This suggests the 
configurations obtained are stationary and the numerical 
model is of high quality. Note that in Figure 1 the cur-
rent density and concentration profiles in the center of 
the sheet have a characteristic bifurcation as the forked 
tongue of a snake. As shown in [Zelenyi et al., 2004; 
Zelenyi et al., 2011; Sitnov et al., 2000], this bifurcation 
is caused by the presence of a relatively large fraction of 
quasi-trapped protons, which oscillate in the center of 
the sheet long enough. This bifurcation is enhanced as 
the fraction of such protons increases. The reflection of 
this subtle effect in the simulation results also confirms 
the high quality of the numerical model. 

Note also that in many numerical models using the par-
ticle-in-cell method, the second moments of distribution 

 
Figure 1. Symmetric configuration: the proton current density y component jiy (z) (a); the proton density n(z) (b); the magnet-

ic field component Bx(z) (c) (in view of the symmetry, its right side is shown for z /RE ≥–0.025). δ=VD /VTp0=2.5 
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Figure 2. Force balance (in nanopaskal). The total balance is indicated by the red line 
 

The electric field potential is also roughly constant, i.e. 
the electric field is very small and has almost no effect 
on the TCS configuration compared to the aforemen-
tioned symmetric configurations. Figure 3 presents the 
stationary configuration in which Tp0δ = 2,DV V =  the 
shear magnetic field component is equal to zero outside 
the sheet, and all other input parameters have the values 
defined at the beginning of this section. Comparison 
between Figures 1 and 3 shows that in the configuration 
obtained for the equal total current across CS, i.e. for 
the same change in the tangential magnetic field com-
ponent when passing through CS 

( ) ( ) 02x x x xB B L B L B= − − =∆ , the current sheet became 
approximately three times wider, and the maximum 
current density component jy(z) decreased approximately 
threefold. 

 
CONCLUSION 

In this paper, we have reported three new results. The 
first result concerns divergent forms of force balance 
equations in collisionless plasma: Formulas (1.12) and 
(1.13) are for the general case; and Formulas (1.15) and 

(1.17), for magnetized electrons. In the case of plasma 
consisting of protons and magnetized electrons, Equa-
tions (1.15) and (1.17) have the form of (1.18) and 
(1.19) respectively and are divergent forms of the pro-
ton momentum flux equation (motion equation). The 
solar wind plasma and Earth’s magnetosphere plasma, 
under quiet heliogeophysical conditions mainly involve 
protons and magnetized electrons. Equations (1.18) and 
(1.19) may therefore be useful for determining the posi-
tion and shape of the bow shock and the magnetopause 
of Earth’s magnetosphere. In addition, Equations (1.18) 
and (1.19) can be used to analyze measurement data 
from the MMS spacecraft mission. They may also be 
utilized to delve into the features of large-scale inhomo-
geneous magnetoplasma structures in the solar wind, 
such as current sheets and magnetic islands. 

The second result deals with force balance equation 
(2.3) in the form of a conservation law for stationary 
spatially one-dimensional TCS. 

This equation is necessary to impose boundary 
conditions in an asymmetric case, as well as to check 
the stationarity of the resulting numerical solution. 

Examples of such a check are given in Figures 2 
and 4. 
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Figure 3. Profiles of magnetic field components (a); density n(z) (b), and current density components jx(z) and jy(z) (c) 
 

 
Figure 4. Force balance for δ=VD /VTp0=2 
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Note that this equation allows us to consider CS with 
ions of several types. An interesting example is CS in 
Jupiter’s magnetotail (see [Artemyev et al., 2014] and 
references therein), wherein along with protons there 
are hot oxygen ions O+ and hot sulfur ions S+, which 
can significantly affect the structure of the CS. Anoth-
er example is CS of near and middle Earth’s magneto-
tail during magnetic disturbances with injection of 
oxygen ions O+ from the ionosphere into the magneto-
sphere. In this case, unlike quiet conditions, the oxy-
gen ions O+, which can significantly alter the configu-
ration of this CS, prevail in it;The final result fully de-
scribes the current of magnetized electrons in the nu-
merical model of TCS with the given normal magnetic 
field component — (3.9), (3.21), (3.22). Mingalev et al. 
[2018] have published only expression (3.22) for the 
electron current y-component in a less convenient form. 
In the most advanced analytical models of TCS, which 
are described in the reviews [Zelenyi et al., 2011, 
2016], the electron current is calculated assuming that 
both temperatures of magnetized electrons are constant: 

e ,T сonst≡
 e .T сonst≡⊥  In [Mingalev et al., 2018] and 

in this paper, this assumption is refined based on the 
kinetic description of magnetized electrons, which con-
firms that the longitudinal temperature is constant, but 
the orthogonal temperature varies according to Formula 
(3.19). 
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