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Abstract. We calculate the angular distribution of 

cosmic rays at a given point of the heliosphere under the 

assumption that the incoming flux from outer space is 

isotropic. The static magnetic field is shown to cause no 

anisotropy provided that the observation point is situat-

ed out of the trapped particle area. We consider a coro-

nal ejection model in the form of a static cylinder with 

an axial homogeneous magnetic field inside. We calcu-

late angular distribution samples in the trapped particle 
area (inside the cylinder) and show that there is a certain 

cone of directions with a reduced flux. For the same 

model with the moving cylinder, the angular distribution 

samples are calculated for different positions of the ob-

servation point outside the cylinder. Anisotropy of order 

of the ejection to light velocity ratio is shown to arise. 

The calculated samples are in qualitative agreement 

with URAGAN muon hodoscope data. 

Keywords: cosmic rays, coronal mass ejections, angu-
lar distribution, anisotropy. 

 

 

 

 

 

 

INTRODUCTION 

The idea of using galactic cosmic rays for monitor-
ing processes in the heliosphere has existed for a long 

time [Dorman et al., 1995]. Advances in this direction 

are, however, limited, largely due to the difficulty in 

calculating cosmic ray trajectories in the interplanetary 
magnetic field and the difficulty in calculating the mag-

netic field itself. In this paper, we address this problem 

using simple model examples, considering anisotropy 

modeling as a scattering problem, i.e. we assume that all 

cosmic rays are generated by an isotropic flux incident 

from infinity. This formulation was proposed, for in-

stance, by Parker [Parker, 1965]. 

Note that cosmic ray propagation is generally con-

sidered within the framework of the diffusion-

convection model when the turbulent scattering is taken 

into account in addition to motion in the regular elec-

tromagnetic field. In particular, the effect of the 22-year 

solar cycle on the anisotropy of cosmic rays with ener-

gies of 10 GeV and higher is examined using this model 

in [Krymsky et al., 2010]. Also noteworthy is that the 

anisotropy in Earth’s orbit can be studied without regard 

for diffusion. In this paper, we consider only the motion 

in a regular field.  

It is known that solar wind plasma in the heliosphere 

may be thought of as a perfect conductor. This means that 

the electric field in the local reference frame is zero, 

whereas in the celestial reference frame it is proportional to 

a small parameter v /c~10–3, where v is the solar wind 
velocity. The time derivative of the magnetic field will be 

of the same value in the celestial reference frame (so-called 

condition of magnetic field frozen; see, e.g., [Landau, 

Lifshitz, 1992], § 65). Hence it is clear that in the Lorentz 

force acting on cosmic rays, 
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where u~c is the velocity of cosmic rays, the main term 
is that with the magnetic field, which can also be 

regarded as static. The magnetic field variation with 

time and its associated electric field are corrections. As 

a first step we, therefore, address the problem of 

calculating the anisotropy in the static magnetic field. 

In this way, we get an impressive general result: the 

static magnetic field in itself proves to be unable to 

produce any anisotropy. If an incident flux is isotropic, 

the angular distribution at any space point will be 

isotropic. 

Thus, the anisotropy is generated by moving field 

inhomogeneities. This means, firstly, that it is weak, 
v /c~10–3, and, secondly, that the greatest contribution to 

it is made by the fastest moving inhomogeneities. We 

examine a model field of a moving magnetic cloud and 

compute anisotropy at different relative positions of the 

cloud and observer. This anisotropy is fairly typical: it 

comprises either one region with increased or decreased 

flux, or two adjacent regions in one of which the flux is 

increased, and in the other it is decreased. Similar 

pictures are observed by the muon hodoscope 

URAGAN [Yashin et al, 2015]. 

 

TWO-DIMENSIONAL 

AXIALLY SYMMETRIC 

STATIC MAGNETIC FIELD 

To obtain an analytically solvable problem, we 
examine a two-dimensional case. We consider the 
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magnetic field as perpendicular to the plane of motion 

and symmetric under rotation around a center. In polar 

coordinates associated with the center, this field can be 

described by the vector potential ( ).A r  Notice that the 

coronal mass ejection model in the form of a cylinder 
with a longitudinal or spiral magnetic field inside is quite 

widely accepted [Burlaga, 1988; Osherovich et al., 1993]. 

Our aim here is to relate the angular distribution of 

particles at the observation point with the distribution of 

incident particles at infinity. 

It is most convenient to find cosmic ray trajectories 

from the (relativistic) Hamilton-Jacobi equation ([Lan-

dau and Lifshitz, 1988b], § 16) 
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Instead of the traditional energy E and momentum 

L introduced for the cyclic variables t and  , it is 

convenient to operate with the momentum 

2 2 2 2/p E c m c   and the impact parameter a=L/p , 

then the principle function of the Hamilton-Jacobi 

equation takes the form 
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and hence the trajectory equation is derived by 

differentiating with respect to the impact parameter a 
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When r→∞, the integral converges, defining an 

asymptotic direction .  The angle θ, at which the 

trajectory leaves the reference point 0 0( , ),r   measured 

from the azimuth direction, is defined by the equality 

(Figure 1) 

0
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If we now imagine that near the point 0 0( , )r   there 

is a radially oriented area dr0 and figure out how many 

particles are incident on it in the range of angles (θ, θ+d 

θ), assuming that the distribution with r  → ∞ is known, 

this problem is solved by calculating the Jacobian from 

(r0, θ) to ( , )a   
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However, whereas Formula (5) directly defines a as 

a function of r0 and θ, Formula (4) with r→∞ defines 

  as a function of r0 and a, so  
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and finally 

0  cos     .dad dr d     (8) 

The factor cosθ takes into account the fact that at 
oblique incidence the effective area is cosθ dr0. Thus, 

this equality means that at isotropic particle incidence 

from infinity their distribution over directions at 

0 0( , )r   remains isotropic. Note that the specific 

expression for ( ).A r  is missed completely in the result. 

The next section shows that the result is valid in general 
for any static magnetic field and in the three-

dimensional case. 

There is one exception here: generally speaking, not 

any trajectory in the magnetic field must go to infinity. 

In terms of the scattering problem, in addition to 

trajectories of passing particles there may be trajectories 

of trapped particles, which always remain in a bounded 

region of space (a well-known example is Eart’'s 

radiation belt). In this case, the boundary condition at 

infinity is not adequate  — to set the distribution over 

trajectories of trapped particles requires additional 

considerations. The simplest of them is the assumption 
about the absence of trapped particles, i.e. the absence 

of particles on the trajectories that do not run to infinity. 

Then, in the angular distribution at this point the 

anisotropy appears which depends on whether only 

trajectories of passing particls go through this point or 

trajectories of both passing and trapped particles, or 

only trajectories of trapped particles (Figure 2). In the 

first case there is no anisotropy. In the second case, 

there is a cone of directions corresponding to  

 

Figure 1. Coordinates and angles. The magnetic field 
symmetry center is at the origin. The observation point has 

polar coordinates 
0 0

( , ).r   The bold line indicates a small 

radially oriented area at the observation point and a particle 
path, θ is the incident angle measured from the normal to the 

area. Also shown are an asymptotic direction (at an angle  ) 

and an impact parameter a 
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Figure 2. Passing and trapped particles. In the gray area, 
the magnetic field is homogeneous, and is absent outside. 
Through a, trajectories of only passing particles (1) run; 

through b, trajectories of both passing (2) and trapped (3) 
particles; through c, trajectories of only trapped particles (4, 
5). The cone of directions of the trapped particle trajectories at 
b are shown in white 

 

trajectories of trapped particles, in which there is no 

flux; in addition to the cone the flux is the same as in 

the first case (thus, the total flux decreases). In the third 

case, the flux is zero in any direction. 

If incident particles have not one fixed energy but 

energy distribution, the above picture is smoothed, but 

remains qualitatively similar: in the area of coexistence 

of passing and trapped particles there appear a cone of 

directions with a reduced flux. Energy distribution of 
recorded galactic cosmic rays over a wide region can be 

described by the formula 

2.7
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here Emin is the cutoff energy of a recorder. 

Figures 3 and 4 plot anisotropy due to capture of parti-

cles in the two-dimensional model problem with a potential 

c c
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This potential refers to a homogeneous magnetic 

field in the region r<rc. As known, in the homogeneous 

magnetic field a particle moves in a circle of radius 

g / ( ),r pc eB  (11) 

(so-called gyroradius) particles can be trapped if 

r g/r c<1. A similar condition remains qualitatively valid 

for an arbitrary field: particles can be trapped if the area 

occupied by the field is larger than the double 

gyroradius in this field. 

 

ABSENCE OF ANISOTROPY 

IN AN ARBITRARY STATIC 

MAGNETIC FIELD 

The above conclusion, drawn for the special case, 

about the absence of anisotropy is in fact quite general 

and is associated, on the one hand, with phase volume 

conservation when the Hamiltonian system is moving, 

and, on the other hand, with constant particle velocity in 

the static magnetic field. 

 
Figure 3. Cone apex angle of trapped particles as a 

function of distance from the center of magnetic field 
symmetry for different values of the ratio rg /rc (indicated near 

curves in the Figure), rg is the particle gyroradius, rc is the 
radius of a region with a homogeneous magnetic field 

 

 

Figure 4. Angular dependence of a flux in the case of 
energy distribution of particles ~E–3 at different distances 

(indicated on curves) from the field center. Gyroradius of 
minimum energy particles rg /rc=0.2 for panel a and rg /rc=0.6 
for panel b 
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Suppose we have a system with a Hamiltonian H(p, 

r, t) and that n(p, r, t) is the phase density, the number 

of particles in given intervals of coordinates and 
momenta at a given time in our case. This number of 

particles can be converted to a flux through an area dS 

in a solid angle dΩ as follows: 
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where 
2| /   | | / |i j i jH p p u p      is the Jacobian from 

momenta to velocities / .H  u p For a particle in the 

electromagnetic field 
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and 
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flux we derive the formula 
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where p should be expressed in terms of a given 

direction n and velocity modulus  through the equality 

2 2/ 1 / ( , ),
e
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The phase density is known to be constant along the 

phase trajectory (Liouville equation [Landau and 

Lifshitz, 1988a], § 46), therefore the boundary condition 

in the form of isotropic incident particles yields the 

phase density having the same value along all paths 

corresponding to the given energy (velocity) of particles 

at infinity. Equation (14) shows that the anisotropy can 

occur if particles coming from different directions to the 

point with a radius vector r have different velocities. In 
the static magnetic field, the velocity is constant when a 

particle is moving, therefore the flux at any point is 

isotropic. A similar result has been obtained in 

[Krymsky et al., 2010] for particle motion in a potential 

electric field. 

Of course, the statement about trapped particles 

remains valid for the arbitrary magnetic field as well. 

 

ANISOTROPY IN A MAGNETIC 

FIELD STATIC IN THE MOVING 

REFERENCE FRAME 

Turn now to corrections through magnetic field 

variation with time and accompanying electric field. 
Consider the simplest case when a magnetic field is 

static in a reference frame moving with a velocity v. 

Since the Hamilton-Jacobi equation is relativistic-

invariant, the problem, in fact, reduces to that 
considered above and we can use the derived complete 

integral, in which we should only express coordinates 

and time through Lorentz transformations 

2
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An alternative way is to convert the incident flux 

into the moving reference frame (in which it becomes 

anisotropic), to solve in the moving reference frame the 

scatterring problem in the static field, to recalculate into 

the fixed reference frame, with Formula (14) used to 

compute the angular distribution. The calculation is 
considerably simplified if we restrict ourselves to the 

correction linear with respect to v/c, for the parameter qs 

after scattering by a moving magnetic cloud we have 

quite a simple formula 

s
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where q is the value for incident particles, φ is the incident 

azimuth at an observation point, a=(xsinφ– y cosφ)/rc is 

the dimensionless impact parameter, β=mc2/(eBrc) is the 

dimensionless gyroradius for particles with q=1. 

The angular distribution is equal to the ratio of 
integrands in Formula (14) before particle scattering by 

magnetic field (in the incident flux) and after the 

scattering (at an observation point). At a constant phase 

density, it reduces to 

1
2 22 2
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the degree q here is lower by 1 than in Formula (14) as 
we address the two-dimensional problem. Even in the 

case of the qs(q) dependence, represented by Formula 

(16), the angular distribution is rather complex. Simple 

expressions can be obtained when βq<<1 (strong field, 

reflection occurs as from an absolutely rigid cylinder) 

and βq>>1 (weak field slightly deflecting particles) 
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where 2cos 1 cos sina a      is the inner normal 

angle cosine at a reflection point, the sum of incident 
azimuth and incident angle. 

Figures 5 and 6 present results of the calculation of 

anisotropy from a moving magnetic cloud. Noteworthy 
is the asymmetrical picture for the case of cloud move-

ment directly to an observer. It can be explained by 
symmetry if we recall that the magnetic field is an axial 

vector, and therefore when reflected in a plane its com-
ponents lying in the plane reverse sign (as opposed to  
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Figure 5. Particle flux as a function of angle in the case of 

a moving magnetic cloud with a homogeneous magnetic field 
inside at r/rc=(0, –2), (2, 0) (directly along the cloud path) and 
(0, 2). Cloud velocity v /c=2·10–3, parameters q=10 (particle 
energy ≈10 mc2), β=0.01 (gyroradius in the cloud field 
rg /rc=0.1) 

 

Figure 6. The same for β=1 (gyroradius rg/rc=10) 

polar vectors for which the component normal to the 

plane changes sign). Thus, the reflection in the plane 

passing through an observer and the axis of cloud sym-

metry changes the sign of the magnetic field, thereby 

leading to a different physical situation and revealing 

itself in the asymmetric dependence of the flux on the 
angle. In the case of a hard magnetic mirror, this asym-

metry is weak, whereas in the case of a weak field, on 

the contrary, the angular distribution is antisymmetric. 

Note that from angular distribution asymmetry we can 

determine such an important parameter as the magnetic 

field direction in a cloud. 

The two adjacent regions with increased and 

decreased fluxes are observed by the URAGAN muon 

hodoscope. As an example in Figure 7, taken from 

[Yashin et al., 2015], we present the result of recovery of 

the cosmic ray flux at the boundary of Earth’s magneto-
sphere as detected by the muon hodoscope from 08:00 to  

 

Figure 7. Cosmic ray flux at the boundary of Earth’s 
magnetosphere as detected by the URAGAN muon hodoscope 
on May 12, 2014, averaged over the interval from 08:00 to 
09:00 UT [Yashin et al., 2015]. The solar corona image in the 
center indicates the sunward direction, the cross on the left 

marks the direction of the interplanetary magnetic field line, 
the cross at the top is the direction of arrival of cosmic rays 
producing vertically incident muons. The parameter δ 
indicates the relative change in the total muon flux; the 
distribution by directions is given in units of statistical error 

 

09:00 UT on December 5, 2014 Note that methods of 

processing URAGAN hodoscope data have been actively 

developing, which can automatically identify these 

regions of increased and decreased fluxes [Astapov et al., 

2017; Getmanov et al., 2017a, b; Getmanov et al., 2019; 

Dobrovolsky et al., 2019]. 

 

CONCLUSION 

Let us briefly discuss advantages and disadvantages 

of our approach. The advantages include the ability to 
calculate directly observed anisotropy based on the 

simple assumption about isotropic nature of the particle 
flux incident from outside. In this case it turns out that 

the static magnetic field does not cause the anisotropy. 
Regions of varying (moving) magnetic field generate 

the anisotropy of the order of v /c~10–3 , where v is the 
solar wind velocity. Fast moving magnetic 

inhomogeneities make the largest contribution to the 
anisotropy. 

The disadvantages indicate that the anisotropy is af-
fected by not only the region of the heliosphere between 

the Sun and Earth, but also by the outer region if it has 
sufficiently strong magnetic inhomogeneities. The very 

assumption about incident flux isotropy is insufficiently 
justified either. There is no direct data on 10 GeV solar 

cosmic rays; and for the 500–1000 GeV cosmic rays it 
is known ([Berezinski et al., 1984], P. 38) that their dis-

tribution is anisotropic, with anisotropy also being 10–3. 
A similar anisotropy has been recently recorded in the 

PAMELA experiment for 1–20 TeV cosmic rays 
[Karelin et al., 2015]. Nevertheless, Formula (14) relat-

ing the flux at two points along one phase trajectory 

remains valid in general and can be applied to the analy-
sis of data from a particle detector. 
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In the future, we plan to test the proposed approach, 

using a more realistic model of coronal mass ejection as 

an example. 
This work was conducted in the framework of budg-

etary funding of the Geophysical Center of RAS, adopt-

ed by the Ministry of Science and Higher Education of 

the Russian Federation. 
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