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Abstract. Using data on three superstorms, we study 

new features of the saturation of the polar cap area when 
the solar wind (SW) increases. The polar cap saturation 
is shown to occur when the SW dynamic pressure and 
southward vertical (IMF) component rise. The 
saturation is realized not only during the passage of 
interplanetary magnetic clouds, but also at significant 
enhancement of SW density when the SW thermal 
pressure is comparable with the pressure of the 
interplanetary magnetic field. We assume that under 
such conditions the saturation is caused not only by a 
decrease in the efficiency of reconnection at the dayside 
magnetopause, but mainly by finite magnetosphere 
compressibility — stopping the magnetopause 
compression due to a rapid earthward growth of the 

geomagnetic field, i.e. the inner magnetospheric 
structure of the geomagnetic field. We have found signs 
of saturation depending on the northward IMF 
component. We assume that the IMF-dependent 
saturation exists for both signs of its vertical component 
due to an increase in the total pressure in the 
magnetosheath. Moreover, when penetrating into the 
magnetosphere, the southward IMF component reduces 
the geomagnetic field and thereby causes additional 
compression of the magnetopause and, accordingly, an 
increase in the saturation level of the polar cap area.  
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INTRODUCTION 

In the magnetosphere there are two families of field 
lines: closed field lines related to the internal 
magnetosphere and open lines related to the external 
magnetosphere (the region of the entry layer at the 
dayside boundary and tail lobes). The open field lines 
are projected onto the near-polar ionospheric region – 
the polar cap. Through the polar cap along the open 
field lines, reconnected with the interplanetary magnetic 
field (IMF), a magnetic flux  and electromagnetic 
energy flux — the Poynting flux S, whose modulus we 
will denote by ε ', following [ Mishin, 1990], propagate 
from the solar wind (SW) into the ionosphere. Magnetic 
energy accumulation during magnetospheric storms and 
substorms in geomagnetic tail lobes causes an increase 
in the lobes, polar cap area, and ε' fluxes transported 
through it. This is followed by explosive releases of the 
accumulated energy appearing, for example, as auroras, 
amplification of electric fields and currents in the polar 
ionosphere. The polar cap area and its associated 
transpolar potential UPC with increasing SW grow 
linearly with an increase in the southward IMF 
component BS  or the SW dynamic pressure Pd at weak 
SW. Under its significant amplification during strong 
storms, the enhancement of UPC slows down, becomes 
nonlinear, i.e. slower than the linear law. Then the 
enhancement almost stops, after reaching critical values 
of 1) interplanetary fields (electric ESW and/or 
southward IMF component BS) [Siscoe et al,. 2002; 
Borovsky et al., 2009; Kan et al., 2010; Lyatsky et al., 
2010; Wilder et al., 2011; Gao et al., 2013 and 
references therein), and 2) dynamic pressure Pd, as 

shown in [Karavaev et al., 2012a, b; Mishin et al., 2015, 
2016]. This phenomenon of slowdown in the 
enhancement of UPC and  is termed the saturation of 
the polar cap potential [Siscoe et al., 2002] and its area 
[Merkin, Goodrich, 2007]. Here and elsewhere, the 
saturation of the polar cap magnetic flux is taken to 
mean the slowdown of its linear growth depending on 
SW parameters. Moreover, by the total saturation of  
we mean the absence of its growth when SW rises. 
Mishin et al. [2015, 2016] have noted a possible 
relationship of this phenomenon with the finite 
compressibility of the magnetosphere, namely with the 
fact that its dayside boundary is rarely observed inside 
the geostationary orbit [Shue et al., 1997, 1998; 
Kuznetsov, Suvorova, 1998; Dmitriev et al., 2014]. 
Most authors consider the saturation phenomenon as the 
slowdown of momentum and energy transfer through 
the dayside magnetopause depending on interplanetary 
fields ESW or Bz. At the same time, some authors 
associate this phenomenon with the feedback effect of 
the ionosphere on the processes at the magnetopause. 
Thus Siscoe et al. [2002] attribute the saturation of the 
reconnection there to a decrease in the magnetic field 
owing to amplification of field-aligned currents in zone 1. 
Maltsev, Lyatsky [1975], Kivelson, Ridley [2008] and 
Lyatsky et al. [2010] consider the saturation of energy 
transfer through the magnetopause by MHD waves as a 
result of an increase in the ionosphere conductivity. 
Furthermore, the saturation can be associated with the 
ring current and magnetotail currents. Kalegaev et al. 
[2008] have found that during strong storms with 
Dst>150 nT, the magnetotail current is saturated and the 
main contribution to Dst variation is made by the ring 
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see the presence of  saturation with respect to the growth 
in the Bz modulus of IMF with its both signs: under 
northward IMF, the saturation occurs even at small values 
of Bz≥1÷3 nT, whereas under southward IMF (Bz<0), at 
sufficiently large values of the modulus 

| | 10 20 S zB B    nT. Note also that the level of  

under northward IMF is much lower than that under 
southward IMF (as has been shown in the previous 
Section). Thus, the saturation of the polar cap magnetic 
flux relative to the growth of the vertical IMF component 
occurs for all the three storms without any restrictions on 
values of Mach numbers and .  

A different situation arises, however, with the 
dependence (Em). During the 2003 and 1998 storms, 
when the SW magnetic pressure dominated over the 
thermal pressure and Mach numbers were moderate 
(M<5), the function (Em) peaked in the middle of the 
range of observed values of Em and then decreased with 
increasing Em (Figures 6, b; 7, b). During the 2000 
storm, when the SW thermal pressure was of order of 
the magnetic one and Mach numbers were large, (Em) 
did not reach its maximum and the total saturation with 
respect to Em did not occur. However, partial saturation, 
i.e. slowdown in the growth rate of (Em), usually 
discussed by other authors (see Introduction) is shown 
in Figure 8, b already for Em=6 mV/m under southward 
IMF (red), and then this function becomes even flatter. 
If we additionally examine the behavior of the plot of 
Ψ1/Em versus Em (Figure 5, b), we can see that the 
last five points representing the 2000 storm (green 
triangles) lie at the very beginning of the gently sloping 
section of the approximating saturation curve, where 
Ψ1/Em is not below 0.05 GWb/(mV/m), unlike the 
two other storms. 

Therefore, during the April 06–07, 2000 storm, we 
have a less effective slowdown in the growth of the 
function Ψ=Ψ(Em) (Figure 8, d). 

 
DISCUSSION AND CONCLUSIONS 

The above results show some ambiguity in the 
behavior of the derivatives Ψ1/Pd and Ψ1/Em during 
a sharp increase in Pd and . Figures 6–8 clarify the 
saturation pattern. They show the behavior of Alfvén 
Mach number and  as a function of SW parameters Em, 
BS, and Pd. The Figures indicate that in all the three 
superstorms the  saturation depends on the southward 
IMF component and the SW dynamic pressure. The  
(Em) curve reaches the saturation regime for the 1998 and 
2003 superstorms, caused by the passage of magnetic 
clouds with large Em (15–30 mV/m). However, during 
the April 06, 2000 superstorm, the saturation of  (Em) 
was weak, most likely due to the IMF turn to the north, 
stop of the growth of Em at ~ 13 mV/m, and completion 
of the active phase of the storm (see 2.2.2). Let us 
emphasize here that the  saturation relative to the 
growth of the southward IMF component BS was 
achieved in this case. After reaching the maximum, the 
(BS) curve dipped with further increasing BS for all the 

events (red curves in Figures 6, c – 8, c). It is important to 
add here that the blue curves in the same Figures show 
that the (Bz) saturation also occurs under northward 
IMF. At least, in all the events  does not grow with 
increasing northward IMF.  

The obtained (Pd) saturation in all the events with 
both signs of Bz and an increase in its level during the 
IMF turn from north to south (Figure 6, f – 8, f) 
corresponds to the observed [Kovner, Feldstein, 1973; 
Shue et al., 1998; Dmitriev et al., 2014] additional 
compression of the magnetopause in such a turn and our 
assumption [Mishin et al., 2016] about its associated 
polar cap area growth The presence of the (Pd) 
saturation under northward IMF, when the effect of the 
dayside reconnection is minimal, is most pronounced 
during the 2000 storm with high Pd pulses observed 
after the IMF northward turn, and also immediately 
after SC during the passage of the SW compression 
region during the 2003 and 1998 storms. The 
intersection of the  saturation levels at different signs 
of Bz (panels c and e in Figure 6) corresponds to the 
time span of the IMF northward turn upon the passage 
of the compression region after SC, when Em and Pd 
variations cannot be considered as independent (see 
Section 2.1). Of special note is the following fact: 
curves d in Figures 6–8 show an increase in the Mach 
number up to MA~6–10 during the 2000 event and up to 
MA ~8 during the 2003 storm for both signs of Bz with 
the total saturation of (Pd), i.e.,  does not grow at 
large values of Pd (curves c). The presence of saturation 
under northward IMF, although at a lower level of  
than that under southward IMF, argues for our 
assumption that the expansion of the polar cap is 
inhibited by the increasing geomagnetic field pressure 
during magnetopause compression through connection 
of geomagnetic field lines with the Earth core, which 
reveals itself at higher latitudes and at a lower level of 
geomagnetic activity. This final, quite high saturation 
level of Ψ(Bz> 0)=0.30÷0.8 GWb is explained by the 
fact that the positive IMF component Bz increases the 

IMF modulus and the total external pressure  
ˆ

BP P P   

in the magnetosheath via the magnetic pressure PB and 
thereby enhances the compression of the magnetosphere 
and the expansion of the polar cap. When turning to the 
south, besides increasing the magnetic pressure outside 
the magnetopause, IMF has yet another effect by 
penetrating into the magnetosphere and reducing the 
geomagnetic field, thus causing an additional displacement 
of the magnetopause to Earth [Kovner, Feldstein, 1973] 
and an increase in the  saturation level. 

Thus, during these superstorms there occurred the Ψ 
saturation with an increase not only in the southward IMF 
component and merging electric field, but also in the 
northward IMF component, as well as in Pd, followed by 
an increase in the Alfvén Mach number up to MA=5÷10. 
This contradicts the following assumptions: 1) about the 
unlimited growth of the transpolar potential with 
increasing Pd [Siscoe et al., 2002]; 2) that saturation can 
occur only relative to the growth of E m and Bs during 
the passage of magnetic clouds and only at small Mach 
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numbers [Lavraud, Borovsky, 2008; Lopez et al., 2010]. 
Therefore, the explanation that the saturation 
phenomenon is caused only by the weakening of the 
dayside reconnection efficiency [Lavraud, Borovsky, 
2008; Lopez et al., 2010] is open to question. Our 
conclusions require further investigation using satellite 
and ground data, with detailed regression analysis and 
model experiments for superstorm conditions when both 
Pd and vertical IMF component (of both signs) reach 
quite high values and saturation conditions hold. 
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