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Abstract. This paper reviews the space weather im-

pact on operation of radio devices. The review is based 
on recently published papers, books, and strategic scien-
tific plans of space weather investigations. The main 
attention is paid to ionospheric effects on propagation of 
radiowaves, basically short ones. Some examples of 
such effects are based on 2012–2016 ISTP SB RAS 
EKB radar data: attenuation of ground backscatter sig-
nals during solar flares, effects of traveling ionospheric 

disturbances of different scales in ground backscatter 
signals, effects of magnetospheric waves in ionospheric 
scatter signals. 
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INTRODUCTION 

The problems of space weather impact on the devel-
oped technological society, and in particular on opera-
tion of radio electronic devices, have recently become 
especially acute. In connection with the inclusion of 
computer and robotic technologies in most of our daily 
life, a natural question arises: how steadily and correctly 
this electronic equipment (not always controlled by or-
dinary users) and its software can operate under varying 
external conditions [Goodman, Aarons, 1990]. 

The problem arose long ago owing to interference 
effects in wire systems [Barlow, 1849] and failures in 
electric power transmission networks [Love, Coїsson, 
2016], especially strong at high latitudes. 

Nowadays, a sharp increase is being observed in the 
number of high precision equipment, which sometimes 
has inconspicuous peculiar properties insignificant un-
der normal conditions. However, under conditions that 
are different from those expected, such peculiar proper-
ties may be critical for functioning of radio electronic 
devices, including commonly used household applianc-
es [Whiteson et al., 2014]. 

The problem of space weather impact on radio de-
vices for regular users has become most evident from 
the analysis of data acquired with global positioning 
systems, which are currently the de facto basic element 
of positioning and timing systems. The main function of 
this system – the precise positioning – turns out to de-
pend on characteristics of a medium. In particular, dur-
ing geomagnetic disturbances, the systems can go 
wrong more often and more seriously and sometimes 
even fail [Afraimovich et al., 2004; Afraimovich et al., 
2007; Kim et al., 2014]. This effect manifests itself in 
positioning of both terrestrial and space objects [Xiong 
et al., 2016]. 

Sudden space weather disturbances leading to pow-
erful scattered signals in radars, radio communications, 

and radiosondes [Bagaryatsky, 1961; Sverdlov, 1982], 
require developing systems for predicting such interfer-
ence and reducing the degree of its influence on radio 
devices. 

Thus, the assessment of space weather impact on 
operation of radio devices, the forecast of its conse-
quences, the readiness for the problems caused by this 
impact, and the elimination of its possible effects are the 
urgent tasks facing any technologically advanced socie-
ty [The Sun to the Earth - and Beyond ..., 2003; Solar 
and Space Physics ..., 2013]. The interval between put-
ting equipment into operation, emergence of operational 
problems, construction and putting into operation of 
new, more reliable equipment in many cases comprises 
several years. These intervals are especially long for 
space-based equipment. A natural solution to this prob-
lem will be to take into account the possibility of failure 
and to estimate space weather effects on the final result 
of operation of this equipment before it is replaced with 
a new one, as well as to predict possible failure periods.  

The problem of assessing the space weather impact 
on different areas of human activity and reducing its 
consequences is usually solved in a variety of ways – 
from implementation of national strategies [Solar and 
Space Physics ..., 2013; National Space Weather Strate-
gy, 2015], plans [National Space Weather Action Plan, 
2015], legislative acts [Obama, 2016], and available 
information systems [Space Weather – Effects on Tech-
nology, 2012] to the participation of enthusiasts and the 
use of capabilities of household devices and computers 
(the so-called citizen science [Barnard et al., 2014, Au-
rorasourus, 2016; Wikipedia, 2016]). Various monitor-
ing and forecasting systems, both global 
[http://www.swpc. noaa.gov/] and local ones designed for 
specific aspects of space weather [Love et al., 2016] are 
stimulated and supported. In-depth reviews of space 
weather effects on equipment of different types can be 
found in the monographs [The Sun to the Earth ..., 2003; 



O.I. Berngardt 

38 
 

Solar and Space Physics ..., 2013; Effects of Space Weath-
er ..., 2004; Goodman, 2005; Space Weather ..., 2007]. 

The main geo-effective space weather effects exten-
sively studied today include [National Space Weather 
Strategy, 2015]: solar radio bursts affecting the opera-
tion of radio receivers; induced geoelectric fields influ-
encing wired energy supply and communication sys-
tems; ionizing radiation affecting the efficiency of elec-
tronic equipment and the vital activity of organisms; 
expansion of upper atmospheric layers leading to an 
increase in temperature and density of these layers and 
affecting the dynamics and lifetime of artificial Earth 
satellites; as well as ionospheric disturbances affecting 
radio wave propagation and scattering. 

The launch of the system of impulse decameter co-
herent radars at ISTP SB RAS, in particular under the 
project "National Heliogeophysical Complex of the 
Russian Academy of Sciences", raises questions of con-
tinuous space weather monitoring for solving not only 
fundamental but also applied problems important for a 
technologically advanced society. 

 
ISSUES OF SPACE WEATHER 
FORMATION 

The term “severe space weather” has arisen relative-
ly recently to describe the influence of solar and geo-
magnetic activity on equipment operation and infra-
structure performance [Severe Space Weather Events, 
2008; Solar and Space Physics, 2013], although space 
weather effects have long been known [Barlow, 1849]. 
A decisive influence on the major part of large-scale 
terrestrial phenomena is exercised by the source of radi-
ation and particles closest to Earth – the Sun. Although 
there are examples of the feedback effect of human ac-
tivity on large-scale natural processes and the artificial 
generation of some natural phenomena [Baker et al., 
2014; Gombosi et al., 2017], but the Sun can be consid-
ered nowadays as the main and permanent source of 
space weather formation. The particle and radiation flux 
from the Sun, highly dynamic in space and time, is as-
sociated with internal solar processes, and, since it is 
impossible to monitor deep processes on the Sun in real 
time, the flux could only be averagely predicted. A hu-
man acts mainly as an observer of solar activity varia-
tions and as a researcher of regular processes occurring 
in the upper layers of the Sun. The 11–12-year solar 
activity cycles, which are related to reversals of the so-
lar magnetic field and reveal themselves in all its pa-
rameters from radio emission (F10.7) to the number of 
sunspots (Wolf number) optically observed for several 
centuries, are well-known. The axial rotation of the Sun 
with a period 25–30 days also cause periodic variations 
in particle-wave radiation fluxes. 

The propagation velocity of such fluxes from the 
Sun to Earth varies: wave radiation propagates at the 
speed of light and reaches Earth in about 8 minutes, the 
corpuscular component moves approximately thousand 
times slower. Thus, if in the first case the motion of 

radiation in most problems may be considered to be 
straight and the motion of objects in the solar system 
may be ignored, for the particle motion we should take 
into account the Sun rotation, the orbital motion of 
Earth and its daily rotation, and calculate the particle 
motion in the resulting complex trajectory in terms of 
geometry (cone) of particle release from the Sun and 
distribution of their velocities. Therefore, it is difficult 
to assess solar particle-wave flux effects, in view of 
possible delays in appearence of these effects, their ex-
tension in time and space (due to the difference in parti-
cle velocities and angles of their release from the Sun) 
[Odstrcil, 2003], as well as the possibility of particle 
accumulation in Earth's magnetosphere (which leads to 
additional time delays of the effects). Solving this prob-
lem requires creating complex physical models, includ-
ing numerical, large computational resources, long-term 
and accurate experiments, as well as a large set of di-
verse diagnostic instruments at various points of Earth 
and outer space, which operate in the mode of continu-
ous monitoring and data transfer to centers of their stor-
age, automatic processing, and real-time cosimulation. 
An essential contribution to the solution of this problem 
is measurements of these fluxes by the ACE and 
DSCVR satellites at the Lagrange point L1, at a distance 
of about 1 million km from Earth. They allow us to in-
crease the accuracy and to detail the short-term predic-
tions of composition and dynamics of particle-wave 
radiation [Machol et al., 2012] as compared to more 
forehand, albeit less accurate and detailed predictions 
based on remote observations of solar activity with var-
ious (ground- and space-based) telescopes. 

Particle radiation, reaching the boundary of Earth's 
magnetosphere, interacts with it. Trajectories of charged 
particles bend significantly, and the particles begin to move 
under strong influence of the geomagnetic field, generating 
electric fields and currents in the magnetosphere. 

An important role here is played by high-latitude re-
gions around magnetic poles (cusps), where the direc-
tion of the magnetic field is close to vertical. This caus-
es charged particles to precipitate from the magneto-
sphere into this region toward Earth's surface. The ob-
served optical effects – aurora borealis – have been well 
known for a long time and represent one of the conse-
quences of the arrival of solar disturbance in Earth's 
magnetosphere. Regular observations of similar effects 
have also been conducted since the last century and car-
ried out by scientists with various special-purpose opti-
cal instruments such as all-sky cameras, photometers, as 
well as by amateur photographers. 

Precipitating particles cause a change in ionization-
recombination processes in the lower layers of the iono-
sphere (D and E) and, in turn, increase the electron den-
sity there. This increase leads to an increase in radio 
wave absorption, which manifests itself as an amplitude 
decrease or the loss of radio signals on the paths passing 
through these regions. 

Such effects are monitored by observing the ampli-
tude of radio signals over long radio paths (e.g., with 
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networks of inclined sounding ionosondes or by receiv-
ing a signal from broadcasting stations) or the amplitude 
of radio signals from space sources (e.g., with riome-
ters). A decrease in signal amplitude is also one of the 
consequences of the arrival of particles and radiation in 
Earth's magnetosphere. 

The voltage difference arising from separation of 
charges moving in the solar wind in Earth's magneto-
sphere under the influence of the magnetic field brings 
about the formation of field-aligned (along magnetic 
field lines) currents. These currents close through the E 
layer (90–120 km above Earth's surface), which has a 
maximum electrical conductivity due to peculiarities of 
distributions of collision frequencies of charged and 
neutral particles. The strong horizontal currents forming 
in the E layer of the polar ionosphere generate magnetic 
field disturbances recorded on Earth's surface with in-
struments for measuring the full magnetic field vector – 
magnetometers. These geomagnetic disturbances, ob-
served since the nineteenth century, are also one of the 
consequences of the arrival of charged particles in 
Earth's magnetosphere. 

Besides the processes caused by the motion of 
charged particles in the ionosphere, the geomagnetic 
field structure changes due to the appearance of addi-
tional charged sources. The main manifestation of this 
effect, associated with the regular particle-wave radiation 
of the Sun (solar wind), is, of course, the difference be-
tween the external geomagnetic field and the dipole field, 
including the existence of a sunward sharp flat transition 
region and an antisunward strongly elongated region. 

The solar wind can change the size and shape of 
the magnetosphere. As a result, the geographic area 
of the phenomena emerging from particle precipita-
tion (auroras borealis, strong ionospheric currents, 
radio wave absorption) shifts from high to middle 
latitudes. In this case, we can observe, say, auroras 
borealis at latitudes of central regions and southern 
borders of the Russian Federation (up to the 40 de-
gree magnetic latitude), where it is usually not ob-
served [Feldshtein et al., 2010]. The remaining ef-
fects (radio wave absorption, strong currents in the 
ionosphere, and geomagnetic disturbances) demon-
strate similar dynamics during intensification of solar 
wind fluxes. 

It is obvious that solar radiation comes much earlier 
than corpuscular radiation and also influences processes 
occurring in Earth's upper atmosphere. The main effect 
is the very existence of the ionosphere – a plasma layer 
ionized by solar radiation in Earth's neutral atmosphere. 
Accordingly, any variations in solar radiation cause var-
iations in the ionospheric electron density at heights 
corresponding to the lines of radiation absorption by 
gases constituting Earth's atmosphere and ionosphere. 
Thus, electron density variations at different heights 
above Earth's surface [Mikhailov, Perrone, 2016] may 
be one of the consequences of solar wind disturbances. 

An important fact is the existence of well separated 
zones in Earth's ionosphere, magnetosphere, and atmos-
phere, on the boundary of which characteristics of the 
medium change drastically. This leads to the existence 

of eigenoscillations in these zones, which propagate in 
the medium relatively independently. 

Such oscillations may appear as Schumann reso-
nances in the layer between Earth's surface and iono-
sphere [Schumann, 1952], internal gravity waves in the 
atmosphere and their effects in the ionosphere 
[Lognonné et al., 1998], fast magnetosonic waves in the 
magnetosphere [Leonovich, Mazur, 2008], and so on. 
Therefore, many processes occurring in the magneto-
sphere–ionosphere–atmosphere system can be consid-
ered as a superposition of eigenoscillations of this sys-
tem. Those oscillations that least fade out with time ex-
ist the longest in this system and produce aftereffects 
when the system continues to change despite that the 
cause of these changes has already disappeared. 

This system is also characterized by dynamics under 
the driving force. For example, gravity variations due to 
the periodic motion of the Moon around Earth lead to the 
formation of tidal waves, which have an effect not only on 
the ocean, but also on the atmosphere and ionosphere 
[Alpert, 1949]; and the motion of the day-night boundary 
(solar terminator) in the atmosphere, to the formation of 
internal gravity waves. 

Thus, Earth's magnetosphere, ionosphere, and at-
mosphere have both eigen and forced oscillations, 
which can lead to the formation of additional disturb-
ances during the periods when the solar wind effect is 
absent or has already disappeared. This sometimes 
causes an additional solar wind effect in time and space, 
including the appearance of the "memory" effect in the 
magnetosphere–ionosphere–atmosphere system. 

 
SPACE WEATHER IMPACT 
ON RADIO DEVICES 

The operation of radio devices depends on a combi-
nation of electromagnetic processes inside and outside 
the devices. We call effects direct if a malfunction is 
caused by processes inside a radio device, and indirect if 
it occurs outside the device. 

Direct effects involve the induction of electromag-
netic fields in conductors inside a radio device, a change 
in potentials due to additional ionization by background 
radiation, the emergence of auxiliary currents due to 
penetration of additional charges from outside, as well 
as an increase in the background electromagnetic radia-
tion of various types and concentration of different par-
ticles during disturbances. This can cause radio equipment 
malfunctions under the influence of induced current, which 
leads to hardware and software malfunctions, a decrease in 
the signal-to-noise ratio, additional ionization of the 
equipment by electromagnetic radiation, and particle-
induced changes in equipment characteristics. 

Indirect effects include changes in the medium of 
radio signal propagation, such as a change in the refrac-
tive index of the ionosphere. In this case, the malfunc-
tion of the equipment is associated with a change in the 
medium it uses to transfer data or operate. Depending 
on types of medium, indirect effects can be classified as 
changes of conditions in the magnetosphere, ionosphere, 
and atmosphere, on or under Earth's surface. 
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Solar radio bursts 
The most intense solar effect is the electromagnetic 

radiation observable in various parts of the solar spec-
trum. Solar radio noise and radio bursts (sudden en-
hancements of radio emission), discovered in the 1940s, 
have been quite actively investigated to this day [Bas-
tian et al., 1998; Solar and S pace W eather R adiophys-
ics ..., 2004; Lee, 2007; Shibasaki et al., 2011]. 

In addition to the general substantial increase in the 
level of radio emission, variations in the intensity are 
possible within the radio burst with periods from milli-
seconds to seconds [Chernov, 2011]. This leads to an 
additional increase in the instantaneous intensity of ra-
dio emission by tens of decibels compared to the aver-
age level of the burst [Benz, 1986], which is already 
higher than the level of the quiet-Sun radio emission. 
Due to these features, the main effect of radio bursts is 
reduced to the occurrence of unexpected interference in 
radar, radio communication, and radio reception devices 
[Bala et al., 2002]. 

Induced geoelectric fields 
Geomagnetic disturbances can cause an amplifica-

tion of currents in the earth's crust, mainly due to the 
amplification of auroral currents in the polar ionosphere 
[Boteler, 1994; Pirjola, 2000]. Geomagnetically induced 
currents affect the stable operation of electric systems 
[Campbell, 1978; Pulkkinen et al., 2005; Thomson et 
al., 2011]. As such, they are direct mechanisms of influ-
ence on radio electronic devices. These currents are 
probably the first observable manifestation of the space 
weather effect on electrical devices [Barlow, 1849]. 

At present, some organizations use geoelectric field 
forecasting systems [Erinmez et al., 2002; Thomson et 
al., 2011]. The increasing interest in geoelectric fields is 
associated with effects in electric power networks. 
These effects often cause long-term malfunctions in 
the networks in North America, Sweden, and Australia 
[Béland, Small, 2004; Pulkkinen et al., 2005; Marshall 
et al., 2011]. 

Ionizing radiation 
The effect of radiation on various electronic devices 

has been known for quite a long time [Ionizing Radia-
tion Effects ..., 2015]; it reduces to a change in charac-
teristics (constant and temporary) of the devices due to 
incoming radiation or its related atmospheric processes. 
This effect can be observed even on consumer devices, 
such as smartphones [Whiteson et al., 2014]. 

These effects are most severe in space vehicles. On 
average, according to CLUSTER data, a solar-radiation-
induced decrease in the efficiency of solar panels on 
board satellites is about 5 % per year. This limits the 
time of their operation [Keil, 2007]. An even more im-
portant effect is the degradation of optical and electronic 
equipment on board satellites, which may also lead to 
their loss [Lotóaniu et al., 2015]. 

Currently, more than 8000 flights a year pass over 
the North Pole [Space Weather – Effects on Technol-
ogy, 2012], hence the need to take into account the 
effect of solar radiation on health of flight personnel, 
passengers, and on electronic equipment. 

 

Table 1 
Modes of radio wave propagation in the ionosphere at different frequencies 

Range Frequencies Propagation mode 

ULF <3 kHz Waveguide, surface wave 

VLF 3–30 kHz Waveguide, surface wave 

LF (LW) 30–300 kHz Waveguide, surface wave 

MF 300–3000 kHz Surface wave, ionospheric wave 

HF 3–30 MHz Surface wave, ionospheric wave with significant  
refraction, meteor scatter, hop propagation

VHF 30–300 MHz ionospheric wave (weakly refractive), 
Meteor scattering 

UHF 300–3000 MHz ionospheric wave (weakly refractive) 

SHF 3–30 GHz ionospheric wave (weakly refractive) 

EHF 30–300 GHz ionospheric wave (weakly refractive) 

 
Expansion of the upper atmosphere 
Monitoring of density, winds, temperature, and com-

position of the neutral atmosphere is an important task, 
which is also closely related to space weather monitoring. 

Space-based systems provide solutions to a large num-
ber of practical problems today. Many of these satellites 
are low-orbital and affected by the neutral atmosphere, 
which causes their deceleration and premature orbit reduc-
tion. This, in turn, shortens the lifetime of a satellite and 
complicates its tracking. The neutral atmosphere is mainly 
controlled by solar activity through surface and atmosphere 

heating by solar radiation and through heat transfer from 
high-latitude regions, in which ohmic heating is caused by 
processes and currents in the ionosphere and magneto-
sphere [Buonsanto, 1999]. Besides, the relationship is be-
ing studied between sudden stratospheric warming events 
and effects of expansion of the upper atmosphere [Liu et 
al., 2013]. 

Ionospheric disturbances 
The mechanisms discussed above are related to the 

direct effect of "severe space weather" on radio devices. 
The main mechanism of the indirect effect of space 
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weather on radio devices are ionospheric disturbances 
[Buonsanto, 1999; Kutiev et al., 2013]. The ionosphere 
is a partially ionized gas divided into several basic lay-
ers (usually denoted by D, E, and F depending on their 
distance from Earth's surface). It is located at a height of 
about 60 to 2000 km and has a strong influence on radio 
wave propagation. The interaction of radio waves with 
the ionosphere depends on frequency, distance from a 
receiver to a transmitter, ionospheric conditions, and the 
underlying Earth surface. A fairly detailed description 
of the radio wave propagation processes can be found in 
the monographs [Ginzburg, 1960; Budden, 1988]. 

The main radio devices affected by space weather 
are HF radio communication devices, surface-to-space 
communication systems, global navigation systems, 
over-the-horizon radars, satellite altimeters, and space-
based radars [Goodman, Aarons, 1990]. The stable op-
eration of most of these devices depends on ionospheric 
conditions [Cannon et al., 2004]. 

Table 1 lists the main mechanisms of radio wave 
propagation in different frequency ranges. 

In the lower part of the spectrum (VLF, ULF), radio 
wave propagation can be described as waveguide propaga-

tion in the effective waveguide formed by Earth's surface 
and ionosphere. In the upper part of the spectrum (SHF, 
UHF), radio wave propagation can be considered almost 
rectilinear, weakly affected by the ionosphere. Between 
these ranges, the ionospheric impact on radio wave propa-
gation is most considerable, and the HF band is worst af-
fected by solar disturbances and is best suited for designing 
tools to monitor such effects [Goodman, 2005]. 

Table 2 shows the main functions of radio equip-
ment, indicating corresponding radio ranges. 

The ULF range (<3 kHz) has been studied in suffi-
cient detail [Bannister, 1986; Pappert, Moler, 1978]. In 
its analysis, the ionosphere and Earth are assumed to be 
ideal, homogeneous, and with sharp boundaries. The 
ionosphere acts at these wavelengths as an ideal conduc-
tor and generally has no effect on propagation of these 
waves. Nevertheless, the lower part of the ionosphere, 
especially the sporadic E layer, can influence radio 
wave characteristics (mainly phase ones) due to the in-
terference of waves reflected from the regular and spo-
radic layers [Pappert, 1980]. 

 

Table 2 
Some applications of different frequency ranges 

Range Functions 

ULF and VLF Navigation, time and frequency signals 

LF navigation, broadcasting 

MF amplitude modulation broadcasting 

HF radio communication, standard time signals, radiolocation, 
amateur radio communication, positioning systems 

VHF Television, broadcasting with signal frequency modulation, 
aircraft radio communication

UHF and EHF GPS/GLONASS navigation, radiolocation, television 

 
The basic model for describing oscillation propagation 

in VLF and LF ranges is waveguide propagation. This 
approach considers the space between the ionosphere and 
Earth's surface as a single waveguide. In this case, trans-
verse electric (TE) or transverse magnetic (TM) modes 
(each with its own characteristics) arise depending on the 
type of antenna used to generate radiation. However, they 
are not independent due to the presence of an inhomogene-
ous magnetic field. 

As regards the ionospheric effect on radio wave 
propagation, the VLF/LF range more strongly depends 
on ionospheric conditions than ULF, and therefore it is 
more affected by space weather disturbances. Without 
considerable space weather disturbances, VLF/LF radio 
wave propagation is more of less stable. Due to interfer-
ence of different modes and their propagation condi-
tions, space weather disturbances can cause, for exam-
ple, sudden phase anomalies (SPA) arising from the 
enhancement of the D layer during solar flares. When 
particles penetrate into the polar cap, as during magnetic 
storms or polar cap absorption events (PCA), propaga-
tion conditions also change, resulting in phase and am-

plitude signal distortions. Other factors such as ground 
conductivity have also a strong effect on signal charac-
teristics. These factors are most significant in Polar Re-
gions, which are affected both by the ionosphere and by 
seasonal dynamics of the underlying surface. 

Many researchers combine MF and HF radio 
ranges because they are characterized by the so-
called spatial (sky or ionospheric) wave – a signal 
path highly refractive in the ionosphere. Moreover, 
the so-called surface (ground) wave related to radio 
wave propagation along Earth’s surface can be ob-
served in both the ranges. Weakening of the sky wave, 
for instance, due to absorption in the D layer, increases 
the probability of observing the ground wave. However, 
sometimes it is convenient to consider the MF and LF 
ranges at a time, for instance, to predict characteristics 
of emission intensity at these wavelengths [Wang, 1985; 
Ghasemi et al., 2013]. A review of experimental data on 
MF radio wave propagation can be found in [Knight, 
1983; Vilensky et al., 1983]. 

In the VHF range, space weather effects are largely 
related to phase and amplitude variations in propagating 
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signals due to ionospheric irregularities of different 
scales. If the irregularities have sufficiently small trans-
verse spatial scales, the phenomenon is observed as 
scintillation [Basu, Basu, 1981; Basu et al., 1985; 
Aarons, 1982; Priyadarshi, 2015]; however, if they are 
relatively large-scale, it appears as smooth changes in 
characteristics of the received signal. 

The main ionospheric effects (signal group delay, 
Faraday fading, Doppler frequency shift, etc.) depend 
on the integral value of electron density along a propa-
gation path. This value is usually called total electron 
content (TEC) and can be measured from data obtained 
by dual-frequency GPS receivers [Klobuchar, 1975]. 
Most errors (up to 70 %) of global satellite positioning 
can be corrected by taking into account this ionospheric 
correction. Even greater success can be achieved by 
knowing the complete three-dimensional distribution of 
electron density in real time. Ionospheric effects of 
global large-scale space weather disturbances can be 
roughly estimated more easily using the global electron 
content – the total amount of electron plasma in the en-
tire ionosphere [Afraimovich et al., 2008] derived by 
integrating TEC maps all over the world. 

The HF range intermediate between MF and VHF 
ranges is the most difficult to describe. This is because 
the critical (plasma) frequencies of the main ionospheric 
layers (except the D layer) are within this range, and the 
gyrofrequencies are comparable with the lower bounda-
ry of the range. At the same time, HF radio wave propa-
gation can be described in terms of the geometrical op-
tics (hop propagation) [Ginzburg, 1960] and mode 
propagation [Kurkin et al., 1981], combining features of 
VHF and LF ranges. High sensitivity to absorption also 
makes it similar to the lower frequency ranges, especial-
ly MF. At the same time, some HF signals with fre-
quencies above the critical frequency can propagate 
under weak distortion of their paths, but under the 
strong influence of polarization effects. This makes 
them close to the VHF range. The existence of irregular-
ities of the order of wavelength, especially at polar lati-
tudes, leads to strong backscattering by natural plasma 
irregularities (radio aurora) as in the VHF range. The 
existence of natural ionospheric irregularities smaller 
than the Fresnel radius results in amplitude-phase fading 
(scintillation). Doppler frequency shifts exceeding 1 Hz 
also make this range similar to VHF and UHF ranges. 

Therefore, the space weather impact on the HF range is 
very strong and includes practically the entire spectrum of 
effects observable in other ranges: absorption due to ioni-
zation during solar flares, absorption in the polar cap, radio 
aurora, multimode propagation, group and phase delays 
caused by refraction, Faraday and Cotton-Mouton polariza-
tion effects [Ginzburg, 1960; Goodman, 1991], etc.  

The extensive use of HF systems requires an under-
standing of the propagation medium, which in turn is 
affected by space weather. The strongest space weather 
disturbance, which affects radio wave propagation, is a 
geomagnetic storm manifesting itself at all latitudes, 
including the least disturbed middle latitudes [Akasofu, 

1977]. Doppler frequency shifts and signal frequency 
distortions also depend on the temporal dynamics of the 
ionospheric channel [Basler et al., 1988] and are respon-
sible for stable receiving. These effects are especially 
strong at polar and equatorial latitudes. 

The main radio equipment that reacts to all or almost 
all space weather effects is a short-wave over-the-
horizon radar with pulsed or continuous signal emission. 
Their scientific equivalent is SuperDARN pulsed radars 
[Chisham et al., 2007], ionosonde-direction finders with 
a continuous chirp signal [Uryadov et al., 2013] or 
oblique sounding ionosondes [Ivanov et al., 2003]. The 
principle of the radar operation is to transmit a complex 
radio signal, which is partially scattered by ionospheric 
irregularities, partially refracted in the ionosphere, and 
partially scattered back by Earth's surface. We use data 
from the Ekaterinburg HF radar (EKB) of ISTP SB RAS 
to illustrate the space weather impact on radio devices. 

 
OVER-THE-HORIZON 
RADIOLOCATION AS A METHOD 
FOR MONITORING SPACE 
WEATHER EFFECTS 

The main tasks of the over-the-horizon radiolocation 
are to detect and examine characteristics of scatterers 
beyond the horizon, using radio wave propagation ef-
fects and complex algorithms for rejecting noises from 
natural sources. The influence of a propagation medium 
on group and phase delays usually remains considera-
ble. Reviews of these radio devices can be found in 
[Headrick, Skolnik, 1974; Alebastrov et al., 1984; 
Headrick, 1990; Principles of Modern Radar, 2010]. In 
scientific problems, irregularities of a propagation me-
dium (mainly the ionosphere) serve as a scatterer. 

As HF radio waves propagate, the emergence of ad-
ditional ionospheric layers leads to the emergence of 
additional propagation paths [Tsunoda et al., 2016], and, 
as a result, complicates matching of the radar range 
(group delay of a signal) and azimuth to real positions 
of scattering objects or directions to them [Reinisch et 
al., 1997; Berngardt et al., 2016; Chen et al., 2016; War-
rington et al., 2016]. The frequency dependence of 
propagation paths causes strong phase distortions, thus 
making the detection of complex signals over long paths 
even more difficult. Moreover, the signal amplitude can 
vary due to defocusing/focusing of the signal [Berngardt 
et al., 2016] and its absorption in the lower ionospheric 
layers [Berngardt et al., 2016; Gauld et al., 2002; Setti-
mi et al., 2014; Settimi et al., 2015; Sonnenschein et al., 
1997]. All these are supplemented with the previously de-
scribed effects: changes in group and phase delays and 
polarization distortions. Even accurate measurements of 
the speed of scatterers require us to correctly take into ac-
count the background ionosphere [Gillies et al., 2011]. 

The operation of over-the-horizon radio devices is 
maintained with systems for modeling radio signal 
propagation in an inhomogeneous magnetized iono-
spheric plasma [Fridman et al., 2016; Landeau et al., 
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