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Abstract. It has been one hundred years since the 

birth of the outstanding scientist Professor V.A. Troitska-
ya. Her remarkable achievements in solar-terrestrial phys-
ics are widely known. For many years, Valeria A. 
Troitskaya was the President of the International Associa-
tion of Geomagnetism and Aeronomy. This article deals 
with only one aspect of the multifaceted creative activity 
of V.A. Troitskaya. It relates to the problem of sources of 
ultra-low frequency (ULF) electromagnetic oscillations 
and waves outside Earth’s magnetosphere. We were for-
tunate to work under the leadership of V.A. Troitskaya on 
this problem. In this paper, we briefly describe the history 

from the emergence of the idea of the extramagnetospher-
ic origin of dayside permanent ULF oscillations in the 
late 1960s to the modern quest made by ground and satel-
lite means for ULF waves excited by solar surface oscil-
lations propagating in the interplanetary medium and 
reaching Earth. 
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This year we celebrate centenary of the birth of Va-
leria Alekseevna Troitskaya (1917–2010). Her outstand-
ing achievements in solar-terrestrial physics are widely 
known. Her efforts in organizing and conducting inter-
national studies of the geoelectromagnetic field were 
highly appreciated by the global scientific community. 
For many years, Valeria Troitskaya was the President of 
the International Association of Geomagnetism and 
Aeronomy. 

We deal with only one aspect of the multifaceted 
creative activity of Professor V.A. Troitskaya. It re-
fers to the problem of the origin of ultralow-
frequency (ULF) electromagnetic oscillations and 
waves. We were fortunate to work under the leader-
ship of V.A. Troitskaya on this problem. We clearly 
remember the congenial intellectual atmosphere she 
was able to create in the research team, helping us 
during scientific inquiries and participating in our joy 
of successful discoveries. 

Ground and satellite observations indicate a rich variety 
of ULF oscillations ranging from millihertz to several 
hertz. There are permanent and sporadic, narrowband and 
broadband oscillations. They can be global, regional, and 
local. Sources of the oscillations can reside in the earth's 
crust, in the atmosphere, ionosphere, magnetosphere, as 
well as outside the magnetosphere in the solar wind ahead 
of Earth’s bow shock. Just as Carl Linnaeus introduced his 
system of naming and classifying plants, Valeria Troitska-
ya conceived the idea of systematizing ULF oscillations to 
arrange the variety of types and forms of experimentally 
observed oscillations [Troitskaya, 1964]. Together with 
researchers at the Borok Geophysical Observatory (GO 
Borok) of the Institute of Physics of the Earth of the 
USSR Academy of Sciences, she used the morphologi-
cal principle as the basis for the classification and intro-
duced a binomial nomenclature. All types of oscillations 
are divided into two classes, abbreviated to Pc (regular 

oscillations, pulsations continuous) and Pi (irregular 
oscillations, pulsations irregular). They are symbolized 
by PcN (N=1, ..., 5) or PiN (N=1, 2). The number N cor-
responds to the number of the subrange of the general 
ULF range (for more detail, see the reviews [Troitskaya, 
Guglielmi, 1967; Troitskaya, Guglielmi, 1969a] and the 
monographs [Jacobs, 1970, Guglielmi, Troitskaya, 
1973; Nishida, 1978]). The geophysical community has 
adopted this systematics. It is still widely used in litera-
ture, providing insight into the rich variety of ULF os-
cillations of terrestrial and cosmic origin (see, e.g., 
[Guglielmi, Pokhotelov, 1996; Kangas et al., 1998; 
Lundin, Guglielmi, 2006; Guglielmi , 2007; Sivokon, 
2011]). 

The most significant scientific results extending 
knowledge about near-Earth space were obtained by 
V.A. Troitskaya and her team in the second half of the 
past century. None of the results has lost relevance 
today. Some of them led to the formulation of complex 
issues that geophysicists are still interested in. Effi-
ciency of the research carried out by V.A. Troitskaya 
and her scientific team is explained primarily by a ra-
tional system of methods. They relied on a general 
approach to formulation and solution of problems, 
which was close to the well-known system approach. 
First, it represents oscillatory systems of Earth's mag-
netosphere as a comprehensive system of structured 
objects interacting with each other and with the envi-
ronment. Second, the approach is characterized by the 
fact that the discovery of empirical regularities during 
experimental research is considered only as a neces-
sary step to understanding, i.e., ultimately to the con-
struction of physico-mathematical models of oscilla-
tion processes. 

By the late 1960’s, many contradictions and incon-
sistencies have been accumulated in the theory of Pc3 
pulsations. It should be said that, in a certain sense, 
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Pc3 is the main type of ULF oscillations. They con-
stantly occur in the range of periods between 10 and 
45 s on the sunlit side. These oscillations were thought 
to be standing magnetosonic waves with nodes at the 
magnetopause and on Earth's surface. This generally 
accepted view at that time is reflected in all papers on 
the subject as well as in the reviews [Troitskaya, Gug-
lielmi, 1967, 1969a,b, 1970] and in the monograph [Ja-
cobs, 1970]. In other words, Рс3 were considered as 
resonant oscillations in the open magnetosonic resona-
tor. However, there are no resonant oscillations of this 
type because both reflecting boundaries are convex in 
the same direction. Besides this inherent contradiction 
of the theory, there was a discrepancy between the theo-
ry and observations. The point here is as follows. Waves 
were considered not to penetrate into the magnetosphere 
from the solar wind, experiencing total internal reflec-
tion at the magnetopause. Accordingly, Pc3 sources 
were modeled as surface waves excited at the magneto-
pause due to the Kelvin-Helmholtz instability. However, 
the peak Pc3 amplitude is observed during the prenoon 
hours, while the Kelvin-Helmholtz instability theory 
predicts its peaks for morning and evening hours. 

To eliminate the contradictions and inconsistencies 
and to understand the origin of Pc3, we, rejecting the 
idea of complete internal reflection of waves penetrating 
into the magnetopause from the solar wind, have put 
forward a hypothesis of Pc3 excitation in the foreshock 
region adjacent from outside to Earth’s bow shock and 
have developed a test that allows us to test our hypothe-
sis by comparing the interplanetary magnetic field 
(IMF) with ground-based observations of Pc3 [Gug-
lielmi, Troitskaya, 1973] (see also [Potapov, 1974; Gug-
lielmi, 1974]). The test has the form f=gB , where f is 
the oscillation frequency from ground-based observa-
tions and B is the magnetic field modulus from observa-
tions in the interplanetary medium. Our theory suggests 
the following value of the coupling coefficient: g≈6 
mHz/nT. Let us pay attention to a peculiarity of this 
formula: it predicts a non-local relation between f and B. 
In other words, to test the hypothesis, we have to meas-
ure physical quantities at two points far apart. The typi-
cal spacing is a minimum of 100 thousand km. The test 
gives a positive result. First, the Pc3 frequency is direct-
ly proportional to the IMF magnitude. Second, the 
measured proportionality coefficient g=5.8 ± 0.3 
mHz/nT almost coincides with the theoretical estimate 
g≈6 mHz/nT.  

The idea of the extramagnetospheric origin of Pc3 
aroused interest among Russian and foreign geophysi-
cists. It was immediately taken up, gained in popularity, 
generated extensive literature, and sparked discussions 
that did not subside until the late 1980s. For example, 
the monograph [Nishida, 1978] testifies to the sharpness 
of the polemics and to the polarity of views. Its author, 
the well-known magnetologist Atsuhiro Nishida, was a 
staunch opponent of our theory. In this connection we 
should note that at present the theory of extramagneto-
spheric origin of Pc3 is generally accepted.  

Not only Earth, but other planets of the Solar System 
have sufficiently powerful magnetic fields. It is clear 
that they also have wave structures similar to Pc3. Rus-

sel and Hoppe [1983] have found an f dependence on B 
from satellite measurements ahead of fronts of the mag-
netospheres in Mercury, Venus, Earth, and Jupiter. It 
turned out that up to measurement errors, the data falls 
on the line f=gB , with g close to 5.8 mHz/nT. In other 
words, it is the same dependence that we predicted theo-
retically and then justified experimentally from Pc3 
observations at the GO Borok of the Institute of Physics 
of the Earth of the USSR Academy of Sciences. This is 
a surprising result. Solar wind flow conditions for the 
planets vary greatly. Thus, the radius of curvature of the 
shock front in Mercury is 0.5, whereas in Jupiter it is 
500 (in Earth’s radii) The mean angle between solar 
plasma flow direction and IMF lines increases from 20° 
in Mercury to 80° in Jupiter. Plasma concentration and 
IMF magnitude vary significantly from planet to planet. 
Nevertheless, the coefficient g from observations in the 
vicinity of the planets is the same as from observations 
of Pc3 on Earth. Thus, the coupling coefficient g is uni-
versal, i.e. it is relatively stable in an extremely wide 
range of variations in parameters of the solar wind flow 
around the planets. 

Encouraged by the success in interpreting Pc3, Va-
leria Troitskaya someday, on returning from an inter-
national conference, asked us as to whether not only 
Pc3, excited just before the front of the magneto-
sphere, but also magnetohydrodynamic waves, excited 
on the Sun, can penetrate into the magnetosphere and 
contribute to the spectrum of ULF oscillations observ-
able on Earth. According to her story, the idea struck 
her after a discussion at the international conference. 
During the discussion, the well-known cosmophysicist 
Thomas Gold hypothesized the existence of specific 
“solar whistlers”, which are excited in solar flares and 
propagate along IMF lines just as whistling atmospher-
ics are excited by lightning strokes and propagate 
along geomagnetic field lines.  

The task set before us was interesting, but it proved 
to be extremely difficult. Proceeding from general ideas 
about the configuration of the magnetosphere and prob-
able ways of wave penetration from the interplanetary 
medium into the magnetosphere, we began our search 
with a careful analysis of ULF oscillations in polar caps. 
This opportunity arose due to the fact that during the 
International Geophysical Year (1957–1958) under the 
guidance of prof. V.A. Troitskaya ULF oscillations 
were recorded at stations located in various regions of 
Earth, including Arctic and Antarctic [Troitskaya, 
1961]. In this, Valeria Troitskaya's outstanding manage-
rial talent manifested itself. 

Soon after beginning the search for an answer to the 
question posed by V.A. Troitskaya, we discovered a 
previously unknown type of Pc1–2 (0.1–5 Hz) oscilla-
tions at the Vostok station in Antarctica [Guglielmi, 
Dovbnya, 1974]. It was proposed to call these oscilla-
tions serpentine emission (SE) because the dynamic 
spectrum of oscillations is remotely similar to a sliding 
snake (Figure 1). An unusual property of SE indirectly 
indicating its extramagnetospheric origin is that oscilla-
tions undergo deep frequency modulation. An important 
feature of SE is that oscillations can be observed under 
extremely quiet geomagnetic conditions: the typical 
geomagnetic index K p=1 (SE morphology is described  
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as the rustle of foliage in a dense forest, ocean waves, or 
twinkling of stars do? Indeed, every living thing on 
Earth has experienced a small but constant influence of 
geoelectromagnetic oscillations for billions of years. 
Questions of this kind arise from time to time, and eve-
ryone may have a specific opinion on this matter, but no 
one has yet formed a convincing answer.  

We are grateful to our colleagues B.V. Dovbnya, 
N.A. Zolotukhina, O.D. Zotov, A.L. Kalisher, J. Kan-
gas, B.I. Klain, R. Lundin, E.T. Matveeva, K. Mursula, 
V.A. Parkhomov, O.A. Pokhotelov, V.F. Ruban, M.G. 
Savin, I.O. Solntseva, I.V. Sterlikova, F.Z. Feigin for 
their memories of Valeria Alekseevna Troitskaya. All of 
us, like many others, were her students and faithful 
friends. This work was supported by RAS Presidium 
Program 15 and RFBR projects No. 16-05-00056 and 
16-05-00631. 
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