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Abstract. We present the results of the studies of 

backscatter ionospheric sounding (BS) on the basis of a 
multipurpose chirp ionosonde developed in ISTP SB 
RAS. We analyze BS experimental data obtained during 
different seasons from 2005 to 2009. The accumulated 
dataset allows us to investigate features of BS signal 
propagation in various heliogeophysical conditions. To 
analyze and interpret BS signals on ionograms, we use 
the results of modeling of characteristics for chirp signals 
in the backscatter and oblique ionospheric sounding un-
der a waveguide approach. We have revealed the most 
characteristic types of ionograms and have established 
conditions of appearance of a given type depending on 
the time of day, season, sounding direction, and medium 

conditions. In winter, spring, and autumn, the prevailing 
types of ionograms are those with BS signals correspond-
ing to the propagation mode through reflection from the F 
layer. Signals reflected by E or Es layers are recorded 
during summer periods. At the same time, frequencies of 
the received signals are sufficiently large, and sometimes 
there are no reflections from the F layer. 

Keywords: ionosphere, ionogram, radio wave propa-
gation, backscatter ionospheric sounding. 
 
 
 
 

 

 

INTRODUCTION 

The backscatter ionospheric sounding (BS) method has 
been adopted for ionospheric research along with vertical 
and oblique sounding methods. It has been used for pre-
dicting conditions of radio wave propagation in radio paths 
and over-horizon radar systems. As regards the transmitter 
power, we can distinguish radiotechnical systems of two 
extreme types, which operate in the backscatter sounding 
mode. The first type includes systems with a transmitter 
power exceeding 10 kW; the second type comprises sys-
tems with a power less than 1 kW. The quality of BS iono-
grams depends directly on the transmitter power: the high-
er is the transmitter power, the greater is the signal-to-noise 
ratio. This allows us to detect high-resolution scattered 
signals from long ranges and to improve the quality of 
ionogram processing and interpretation. However, a high 
transmitter power increases costs for maintenance of the 
system. Moreover, a problem arises of electromagnetic 
compatibility of the sounding system as a whole. To solve 
the problem of increasing the power potential of stations, 
while limiting the transmitter power, and to provide high 
time resolution, radars extensively use chirp signals 
(Varakin, 1970; Cook, Bernfeld, 1971; Sinnott, 1988; 
Wise, 2004; Earl, Ward, 1987]. In ionospheric studies, 
chirp signals are exploited to devise ionosondes operating 
in vertical, oblique, and backscatter sounding modes 
[Brynko et al., 1988; Ivanov et al., 2003; Podlesny et al., 
2013]. Up-to-date chirp oblique sounding ionosondes de-
tect signals over long paths, including round-the-world 
ones [Ivanov et al., 1997; Kurkin, 2000; Ivanov et al., 
2003]. A new instrument — a chirp ionosonderadio- 

direction finder — has been developed, which can simulta-
neously measure the key characteristics of the ionospheric 
channel (distance-frequency, amplitude-frequency, and 
angular-frequency characteristics) in the entire frequency 
range of HF radio signal propagation. This instrument was 
used in experimental studies of radio wave propagation 
along paths of various lengths and directions in the natural 
and artificially disturbed ionosphere. The ionosonde-
radiodirection finder can be applied to the over-horizon 
short-wave radar of Earth’s ionosphere on the planetary 
scale [Valov et al., 2012; Vertogradov et al., 2013; Urya-
dov et al., 2013]. In the backscatter ionospheric sounding 
mode, the chirp ionosonde can detect signals scattered by 
Earth’s surface at large distances from a transmitter under 
relatively low transmitter powers with the use of a signal 
frequency compression technology [Philipp et al., 1991; 
Ilyin et al., 1996; Ivanov et al., 2003]. The multi-year re-
search on BS sounding with the chirp ionosonde, devel-
oped at ISTP SB RAS, has revealed that such systems can 
be applied to diagnosing the propagation medium within 
the maximum range of one hop (~3000–4000 km) 
[Altyntseva et al., 1990; Ponomarchuk et al., 2009]. This 
paper reports results of a study of features of the backscat-
ter ionospheric sounding in northeastern Russia. This study 
relies on experimental data obtained under various helio-
geophysical conditions in 2005–2009. To interpret BS sig-
nals on ionograms, we have used results of the modeling of 
characteristics of chirp signals in the backscatter ionospher-
ic sounding under the waveguide approach with the IRI 
model [Ponomarchuk et al., 2009; Bilitza, Reinisch, 2008; 
Ponomarchuk et al., 2014]. 
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EXPERIMENT 
AND DATA PROCESSING 

We analyze experimental BS data acquired with the 
ISTP SB RAS chirp ionosonde in different seasons in 
2005–2009. A transmitter was in the town of Usolye 
Sibirskoye (52.8° N, 103.3° E); a receiver, in the village 
of Tory, the Republic of Buryatia (51.8° N, 103° E). 
The transmitter was a log-periodic antenna array with 
the azimuth rotary mechanism. The receiver was a BS-2 
system of antennas with their pattern maximums di-
rected at 55°, 121°, 235°, and 301° azimuths. The 
transmitter power was less than 1 kW, therefore we 
could detect scattered signals largely within the maxi-
mum range of one hop (~ 3000–4000 km). The BS stud-
ies were mainly carried out during the minimum of solar 
activity between solar cycles 23 and 24. During the ex-
periments, geomagnetic conditions were quiet. 

The secondary processing of ionograms had been 
made to remove noise components from the image and 
to extract points with significant amplitude correspond-
ing to arrival times of a signal along the leading edge of 
the BS signal or to the maximum in the amplitude relief 
[Grozov et al., 2012; Grozov et al., 2013]. To eliminate 
noise from the image and to restore signal samples, we 
employ a median filter capable of smoothing noises, 
reducing the blurring of track boundaries, and restoring 
values in track breaks. To separate single artifacts, par-
tially restore data, and identify the primary track on an 
ionogram, we use a cellular automaton mechanism. Sig-
nals extracted on ionograms during secondary pro-
cessing are interpreted based on the results of modeling 
of BS signal characteristics. Experimental studies and 
modeling of propagation characteristics have estab-
lished that the main contribution to BS signal formation 
is made by regions of scattering  by Earth’s surface lo-
cated near the boundary of the illuminated zone (transi-
tion from the silent zone to the reception zone for 
oblique sounding signals) for individual hops, [Chernov, 
1971; Altyntseva et al., 1990]. The position of the 
boundary of the illuminated zone is found using the 
distance-frequency characteristic (DFC) of BS signals 
along the leading edge because the maximum in the 
amplitude relief of a BS signal is close in the group path 
to the leading edge boundary [Dyson, 1991; Ponomar-
chuk et al., 2009]. Therefore, BS ionograms can be in-
terpreted by calculating the frequency dependence of 
the minimum group path Pm(f) corresponding to the 
closing point of the upper and lower rays for oblique 
sounding signals. The operating frequency f for the re-
spective range Dm(f) is the maximum usable frequency 
(MUF) of radiocommunication. For BS DFC on iono-
grams to be automatically interpreted and restored, a 
method has been worked out which is based on the adi-
abatic dependence of the minimum group path of a sig-
nal scattered by Earth's surface in the relative frequency 
grid v=f /fm when ionospheric parameters change 
[Kurkin et al., 1993; Ponomarchuk et al., 2016]. For 
predictive ionospheric parameters on the frequency grid, 
we compute DFC of BS signals along the leading edge. 
The predictive DFC of BS signal Pm(f) is recalculated 
into the relative frequency grid v. As the initial frequency 

fm we take MUF for the maximum signal range. After 
the secondary processing of the experimental BS iono-
gram, there is a matrix of experimental points, which 
corresponds to a two-dimensional array of the group 
path Pi on the frequency grid fj for points with signifi-
cant amplitude. The experimental points are also trans-
ferred to the relative frequency grid v. The algorithm for 
automatically identifying propagation modes on BS 
ionograms involves determining the maximum of the 
histogram of experimental points falling into the model 
mask constructed from the long-term forecast, with fm 
changing at the relative frequency grid v=f/fm. By mul-
tiplying v by the computed value of the real fm, the 
predictive DFC values are transferred to the frequency 
scale. Thus we restore and identify DFC of BS signals 
for missing sounding frequencies. 

Figure 1 shows a BS ionogram obtained on January 
22, 2007 at 06:31 UT. The main trace of a BS signal 
reflected from the F2 layer is a continuation of the 
height-frequency characteristic of the second-order 
mode under quasi-vertical signal propagation from the 
transmitter to the receiver, beginning from the critical 
frequency of the F2 layer. On the ionogram, there are 
multiple signals of quasi-vertical sounding in the fre-
quency range 4–7 MHz. Solid lines in the Figure indi-
cate the results of calculation of DFC of BS signals 
along the leading edge Pm(f) for one-hop, two-hop, and 
three-hop propagation modes 1F2, 2F2 and 3F2 respec-
tively. Pm(f) has been simulated under the waveguide 
approach with the IRI model [Ponomarchuk et al., 2009; 
Ponomarchuk et al., 2014; Bilitza, Reinisch, 2008]. The 
Pm(f) simulation results for 1F2 enables reliable identi-
fication of respective BS signals on the ionogram. There 
are BS signals corresponding to 2F2 and 3F2 on the 
ionogram, but they have low amplitude, therefore they 
are not extracted in the secondary data processing. 
Figure 2 presents the results of the secondary processing 
and interpretation of the 1F2 mode.  

Then, we analyze the experimental data using the 
simulation results and automatic processing and in-
terpretation of BS ionograms 

 
ANALYSIS OF EXPERIMENTAL 
DATA 

The analysis of the ionospheric sounding results by 
the BS method for a long time has revealed the most 
characteristic types of ionograms depending on the time 
of day, season, direction of sounding, and propagation 
medium conditions. BS ionograms can conventionally 
be divided into eight main types [Kabanov, Osetrov, 
1965; Chernov, 1971; Altyntseva et al., 1990]. 

Type 1. Ionograms of the first type feature a small scat-
tering of radio waves reflected by the F layer along the 
entire path of their propagation, except for scattering by 
Earth’s surface. Ionospheric conditions characterized by 
DFC of this type allow for selection and correction of op-
erating frequencies. As a rule, we can obtain qualitative 
ionograms for distances up to 3000–4000 km.  

Figure 3 shows the BS ionogram obtained on No-
vember 12, 2009 at 01:40 UT. The central azimuth of 
sounding and receiving sector corresponds to 55°. Dots 
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grams with atypical reflection tracks having a weak fre-
quency dependence of the group path, which cannot be 
interpreted as typical BS signals.  
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