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______________________________________________________________________________________________ 

 

We present the results of numerical modeling of a traveling ionospheric disturbance that causes z-shaped 

bends at the Pedersen ray of oblique incidence ionograms. The results of trajectory synthesis of oblique 

incidence ionograms are given for the ionosphere, taking into account the traveling ionospheric disturb-

ance. In the work, we use the International Reference Ionosphere, adapted to experimental data, and the 

Global Model of the Ionosphere and Plasmasphere. 
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_____________________________________________________________________________________ 

 

INTRODUCTION 

 

Ionospheric irregularities, including traveling ionospheric disturbances (TIDs), have been studied in 

many papers [Maeda, Handa, 1980; Ivanov et al., 1987; Boytman, Kalikhman, 1989; Vugmeyster et al., 

1993; Millward et al., 1993; Hocke, Schlegel, 1996; Afraimovich et al., 2002; Ding et al., 2008]. Along 

with diurnal and seasonal variations of ionospheric parameters (large-scale irregularities) at ionospheric 

heights there are traveling ionized structures of small and medium scales. 

 

Despite the emergence and development of space-based sensing instruments, which gave an oppor-

tunity to obtain data on the Total Electron Content [Afraimovich, Perevalova, 2006], ionospheric research 

with the aid of frequency-modulated continuous wave ionosondes is relevant and sometimes the only way 

to gain information about a communication channel. It is important to understand factors that cause dis-

tortions of distance-frequency characteristic (DFC) of oblique sounding (OS) and to deviations from 

mean diurnal variations in maximum observed frequencies (MOF). MOF variations with periods of more 

than one hour on OS paths can be attributed to large-scale TIDs passing the sounding path at F-region 

heights [Kutelev, Kurkin, 2011]. MOF variations with shorter periods often occur with z-shaped bends in 

the single-hop 1F2-mode in DFC [Vertogradov et al., 2008], which move in the course of time along the 

upper ray (Pedersen) from the region of higher delays to the region of lower ones (sometimes repeating 

this movement several times). 
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The purpose of this study is to model TID that causes z-shaped bends at the Pedersen ray in 

DFC. To simulate the propagation medium, we employ the following models: International Reference 

Ionosphere (IRI) with correction over real observations and the Global Model of the Ionosphere and 

Plasmasphere (GMIP) developed in ISTP SB RAS. 

 

MODELING DFC 

 

DFC of a signal is calculated using the geometrical optics approximation [Kravtsov and Orlov, 

1980]. The software is implemented with the method of characteristics [Golygin et al., 2003; Mikhailov, 

Kurkin, 2007]. Under this approach, a path problem is solved based on numerical integration of a system 

of characteristic equations for a two-dimensional case, using the Runge-Kutta method of the forth order 

of accuracy [Bakhvalov et al., 2001]: 
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where r, φ are polar coordinates in the plane of the radio path with respect to Earth’s center, τ is the group path 

(propagation time multiplied by the speed of light), fpe is the plasma frequency, f is the signal frequency, pr, pφ 

are components of the orienting pulse p


 (equal to the absolute value of refractive index n at a tangent to the 

trajectory in the direction of propagation). To compensate for a computational error, we make a step-by-step 

test to meet the eikonal equation 2 2 2
rp p n   and, if necessary, correct the orienting pulse in magnitude p


. 

 

The propagation medium is specified, taking into account results obtained in [Kiyanovsky, Sazhin, 

1980], by evenly spaced vertical profiles of plasma frequency (with a step of 10 km) along the path in the 

great-circle arc (with a distance of ~ 80 km between nodal points). Characteristics of the propagation me-

dium are approximated through application of second-degree two-dimensional local B-splines on a uni-

form grid of values [Konoplin, Orlov, 1981] for the plasma frequency and for its partial derivatives. Input 

parameters for calculations are taken such that the calculating time is optimal. In most cases, the integra-

tion step is 1 km. The calculation in nodes of reference values of partial derivatives is based on plasma 

frequency interpolation by a Lagrange polynomial: 
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where k = 1, ..., N. 

 



Modeling z-shaped disturbance… 

57 
 

MODELING TID BY IRI 

Ionograms often have various DFC distortions manifesting themselves as bends, loops, scattering, 

etc. Figure 1 shows OS ionograms with traces of TIDs obtained on two paths (Figure 2) over the observa-

tion period from March 29 to April 2, 2004. 

 

Transmitters are located in Magadan (60° N, 150.7° E) and Khabarovsk (48.5° N, 135.1° E). A re-

ceiver is in the Tunka valley in the village of Tory (51.8° N, 103° E), at about one hundred kilometers 

from Irkutsk (52° N, 104° E). The length of the Khabarovsk–Tory path is ~ 2300 km; Magadan–Tory 

path is ~ 3030 km. The distance between the midpoints of the Khabarovsk–Tory (51.26° N, 119.57° E) 

and Magadan–Tory (58.2 ° N, 124.17 ° E) paths is ~ 825 km. 

 

We can see (Figure 1) that these DFC have traces of reflections that are not characteristic of the 

spherically stratified ionosphere or the ionosphere with a weak horizontal gradient. The geomagnetic ac-

tivity index Kp in this period did not, on average, exceed 3. However, despite Earth’s magnetic field was 

relatively quiet those days, at certain moments there were fairly stable z-shaped or sickle-shaped bends 

(“sickles”) in the single-hop 1F2-mode of DFC, which moved in the course of time from the region of 

higher delays to the region of lower ones. 

 

Numerical modeling with geometrical optics approximation is widely used to study TID effects on 

characteristics of decameter radio waves. For example, in [Balagansky, Sazhin, 2003], disturbances on 

OS ionograms are interpreted through numerical modeling of three-dimensional inhomogeneous wave-

like TIDs for the global ionospheric model with correction. An attempt to interpret OS ionograms with z-

shaped distortions at the Pedersen ray (Figure 1) was made in [Kopka, Möller, 1968], in which the au-

thors carried out computer simulation to study effects of small horizontal variations in a layer height for a 

single-layer parabolic ionospheric model on 2000 and 8000 km paths. Unlike [Kopka, Möller, 1968], in 

this work we run simulation for conditions of the real path (Khabarovsk–Tory, the range is ~ 2300 km) 

over the full ionospheric profile with gradient, adapting the IRI model [Kotovich, Mikhailov, 2003]. 

 

The joint application of ionospheric models, adaptation techniques, methods for calculating propaga-

tion characteristics, and experimental data, acquired on OS paths, improves the accuracy of interpretation 

of observations. To adapt the IRI model, we use VS data obtained near transmission and reception points; 

and to acquire data at the midpoint of the path, we utilize a method of converting experimental DFC into 

height-frequency characteristic (VFC) [Kim et al., 2004]. The OS data conversion algorithm provides 

VFC for the midpoint of the path, but the ionospheric model can be corrected using only f0F2. 
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[Krinberg, Tashchilin, 1984; Tashchilin, Romanova, 2002; Tashchilin, Romanova, 2013]. This model is 

used to calculate ionospheric parameters in extreme conditions, i.e. during magnetic storms and solar 

flares. An important role is played here by electron density variations in the lower region of the iono-

sphere (E layer) during these periods as compared to the background undisturbed ionosphere because they 

can substantially increase signal absorption. GMIP, as other ionospheric models, retains seasonal diurnal 

variations in ionospheric parameters, their dependence on solar activity, season, time of day, as well as on 

coordinates (latitude, longitude) of radio path’s point of signal propagation, and takes into account the 

horizontal ionospheric irregularity at dawn and dusk hours. The complex algorithm including blocks for 

calculating GMIP and conditions of HF radio wave propagation allows us to compute distance-frequency 

and angular frequency characteristics of signals [Ponomarchuk et al., 2015]. 

 

The software package for calculating DFC enables us to represent all major propagation modes of a 

signal reflected from the regular ionospheric layers (E, F1, F2). Figure 7, a shows a typical DFC obtained 

on the Khabarovsk–Irkutsk path on March 7, 2015 at 00:36 UT. Lines depict DFC of the propagation 

modes 1F2, 2F2, and 3F2 calculated in the geometrical optics approximation. 

 

Figure 7, b, c, d presents OS ionograms with traces of disturbances obtained on the Khabarovsk–

Irkutsk path on March 7, 2015 at 00:56 UT, 01:06 UT, and 02:06 UT respectively. Approximately one 

hour after the disturbance commencement, on the ionograms there were no bends at the upper ray; and 

TID effects caused MOF to increase. 

 

Internal gravity waves (IGW), which always exist in the thermosphere, play an important role in the 

formation of electron density irregularities in the F-region. Ionospheric effects of propagating IGW is 

TID, i.e. rise and subsequent fall of the F2 layer as IGW passes over the station, which usually occurs 

with a phase-shifted change in the electron density at the F2-layer maximum. Since the main mechanism 

of IGW influence on F-layer plasma is the transfer of momentum of horizontally moving neutral particles 

to ions, which thus acquire an additional velocity along the magnetic field, when simulating TID we spec-

ify wind momentum at a given point of the path. 

 

To preset the propagation medium at each point of the path, we calculate the vertical profile of ionospher-

ic parameters, using GMIP. GMIP has been developed from two models: the global semi-empirical prediction 

model for the D-region designed to calculate ionization in the lower ionosphere (40–100 km), and the Theoret-

ical Model of the Ionosphere and Plasmasphere for calculating ionization at a height above 100 km. 
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CONCLUSION 

 

Using the ionospheric model adapted from experimental data, we have tested the disturbance model ac-

counting for the change in hmF2in local sections of the OS path. We have shown that OS ionograms with z-

shaped bends in the vicinity of the upper ray, which are not characteristic of the spherically stratified iono-

sphere or the ionosphere with a weak horizontal gradient, may indicate that at the moment of formation of a 

reflected signal, it is reflected and focused from the region of the hmF2 local jump occurring in the first half of 

the path. The modeling has also revealed that with TID passing nearby the midpoint of the OS path, bends at 

the upper ray disappear and MOF increases. This can be used to obtain TID parameters by analyzing MOF 

variations from observations acquired at the network of OS paths. If the jump of hmF2 falls on the second half 

of the path, there is no z-shaped bend at the upper ray of the single-hop mode 1F2. 

 

The ISTP-developed global model of the ionosphere and plasmasphere allowed us to attribute 

the local change in hmF2 to the influence of the thermospheric wind differing from the background 

wind by 25 m/s. 

 

The method of correcting the IRI model from experimental OS data can also be used to correct other 

ionospheric models capable of adapting from f0F2. The necessary conditions are the availability of relia-

ble experimental OS data and the possibility of obtaining parameters of the single-hop 1F2-mode. The 

process of adaptation of the ionospheric model can be employed to solve the inverse problem in interpret-

ing experimental data. 

 

We are grateful to A.V. Tashchilin and A.V. Oinats for useful consultations. 
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