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_____________________________________________________________________________________ 

 

We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a 

coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal 

propagation results in the observed frequency shift for each ray (Doppler effect). The modeling is 

based on the assumption that during propagation of a single pulse a channel can be considered 

stationary. A phase variation in the channel transfer function is shown to cause the observed 

frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we 

can measure the rate of variation in the mean phase of one pulse relative to another. The modeling 

is carried out within the framework of the method of normal waves. The method enables us to model 

the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling 

reveals that a local change in ionospheric conditions more severely affects the rays whose reflection 

region is in the area where the changes occur. 
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______________________________________________________________________________________ 

 

INTRODUCTION 

 

At present, the most commonly adopted method of measuring the Doppler frequency shift is the 

spectral analysis [Baddeley et al., 2005; Bianchi, Altadill, 2005; Petrova et al., 2009]. With this approach 

for a quasi-monochromatic signal in the case of a stationary medium and constant velocity of a 

transmitter or receiver, we obtain a pronounced peak whose position is determined by a frequency shift 

(classical Doppler effect).  

 

For a non-stationary medium and time-varying velocity of a receiver or transmitter, we get the so-

called Doppler spectrum, thus losing some details in the temporal behavior of the frequency shift, 

hereinafter referred to as fine structure of the Doppler effect. Notice that the Doppler spectrum has different 

interpretations depending on conditions of a problem to solve. 

 

An example of such a non-stationary medium is the ionosphere. When utilizing spectral methods to 

measure the Doppler frequency shift in a quasi-monochromatic signal that propagated through the non-
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stationary ionospheric radio channel, we are limited by two factors: dispersion precludes the formation of 

a too short signal, and nonstationarity hinders the analysis of too long signals. Typical values of Doppler 

(parametric) frequency shifts of the quasi-monochromatic radio signal in an HF band are hertzes or 

fractions of a hertz. Measuring similar values requires signals lasting up to tens of seconds, but radio-

channel nonstationarity imposes constraints on the use of such signals. 

 

Another approach allowing us to measure the fine structure of frequency shift is the analysis of 

a signal phase. For a single-path signal it is a fairly easy task. However, as a continuous signal 

propagates through a multipath radio channel, phase behavior becomes rather complicated, representing 

the behavior of a sum of ray phases and not of the phase of an individual ray. The problem of separating 

rays of such a signal is incorrect and generally unsolved.  

 

Instead of the continuous signal, we can use a pulsed signal that can be split into separate rays 

at a receiving point with respect to delays. Radio-channel dispersion and nonstationarity slightly 

affect the pulses whose bandwidth is much narrower than coherence bandwidth of the channel (about 

hundreds of kHz [Ivanov et al., 2006]), and their length is comparable to propagation time and is 

much shorter than the characteristic time for changes in parameters of the radio channel. A radio 

channel can be considered stationary during propagation of one pulse of this type, but single pulses 

do not allow us to measure the rate of change in ionospheric parameters. In this case, we can register 

either a pulse-train spectrum [Batukhin et al., 2000] that is discrete or an amplitude and phase of 

each pulse with subsequent analysis of their temporal variations.  

 

In the general case, temporal variations in parameters of the ionospheric radio channel cause changes in 

characteristics of separate pulses. It is, however, easy to establish that during spectral measurements of 

a coherent pulse sequence, only phase variations in the channel transfer function (that determines the mean 

phase of an amplitude-modulated pulse) change the position of the central spectral line in the discrete spectrum. 

In this case, amplitude variations or delays do not lead to shifts of the central line. Amplitude variations cause 

deformation of spectral lines; and delay variations produce a small change in distance between spectral 

lines, leaving the position and shape of the central line unchanged.  

 

Thus, in the case of small variations in ionospheric parameters, signal phase and amplitude vary 

continuously from pulse to pulse; amplitude variations may be ignored. The phase variation rate can be 

interpreted as the Doppler frequency shift [Barnes, 1992; Cohen, 1995]. 

 

Accordingly, employing a model of transfer function of the multipath radio channel whose 

parameters vary slowly and continuously with time, we can register phases of certain pulses 

corresponding to individual rays. Phase variations in a received signal allow us to trace the Doppler 

frequency shift for each ray, using the coherent pulse sequence. 
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PROPAGATION OF THE COHERENT PULSE SEQUENCE THROUGH  

THE RADIO CHANNEL 

 

For simplicity, we consider narrowband amplitude-modulated pulses with a carrier frequency ω0 and 

amplitude а(t). The pulses repeat themselves at a time interval T. 

 

A particular pulse can be represented as 

u(t)=a(t)cos(ω0t). (0) 

 

The coherent sequence of generated pulses (0) 
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where K is the number of pulses. 

 

For simplicity, we assume that ω0T=2πn with n being an integer. Then pulse-train spectrum (0) 

can be written as 
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where U(ω)=(A(ω–ω0)+A(ω+ω0))/2, A(ω) is the a(t) spectrum. In this case, 
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Equation (4) shows that as the number of terms increases the sum of exponents tends to the sum of 

δ-functions. The coherent signal sequence is needed in order that exponents in the sum have no phase 

shifts. In fact, the finite sum differs from the δ-function and takes the form of narrow peaks repeating 

themselves with a period of 2π/T with lower peaks grouped together in the near vicinity. Thus, the 

spectrum of coherent pulse sequence becomes discrete. Yet the spectrum envelope in the vicinity of 

ω=±ω0 is equal to the spectrum of a single pulse A(ω). 

 

As the pulse-repetition period decreases, spectral lines move apart; and as it increases, the lines 

become closer to each other. 

 

When the pulses begin to merge, i.e. their repetition period becomes shorter or equal to the duration of 

a certain pulse, there remains only one line. If the envelope of a continuous signal varies slightly, the line 

turns into a very sharp peak corresponding to a monochromatic signal. Thus, the continuous monochromatic 

signal can be considered as a coherent sequence of pulses with a repetition period being shorter or equal to 

their duration. 
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Let us describe propagation of the pulse sequence through a single-path quasi-stationary channel 

whose parameters slowly vary with time. By the term quasi-stationary we mean that such a channel in a 

signal band for the propagation time of kth pulse can be considered stationary and can be characterized by 

a transfer function. 
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where 0 0( )k kH H   is the modulus of transfer function at the carrier frequency; 0 0( )k k     is the 

group delay of the pulsed signal equal to the frequency derivative of transfer function phase; 

0
0 (ln | ( ) |)k kH 


    is the logarithmic frequency derivative of transfer function modulus 

characterizing pulse distortions in the first-order bandwidth; 0 0( )k k     is the transfer function phase 

at the carrier frequency, subsequently referred to as phase. 

 

The spectrum of coherent pulse sequence (0) having passed through the radio channel takes the form 

( ) ( ) ( ) exp( ).k
k
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For the stationary radio channel, H0k=H0, τ0k=τ0, γ0k=γ0, Φ0k=Φ0. Then  
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Here we introduce a designation 
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Let us consider the effects of variations in each transfer function parameter on a received signal. 

 

First, we analyze phase variations. Let the phase vary linearly from pulse to pulse, i.e. Φk=Φ0+kΔΦ. 

Then the spectrum of the adopted sequence can be written as 
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Figure 1 illustrates spectrum (8). From now on, spectra are presented without considering the 

envelope U0 (ω). Along the x-axis is the deviation from the carrier frequency ω0. The dashed line 

indicates the spectrum of pulse sequence in the stationary case; the solid line, in the non-stationary one. 

 

Thus, the apparent frequency shift in the adopted sequence Δω=ΔΦ/T. This shift can be seen in 

Figure 1. 

 

Let us now examine the influence of a group delay shift. Let the group delay also vary linearly from 

pulse to pulse τk=τ0+kΔτ. The spectrum can then be written as: 

 0 0( ) ( ) exp ( )( ) .
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From (4) and (9) it follows that only the distance between spectral lines varies, whereas shape and 

position of the spectral line at ω0 remain unchanged. This can be seen in Figure 2 that depicts spectrum (9). 

 

Now let the amplitude vary linearly, H0k=H0+ΔHk, then 
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Figure 3 shows that the small linear amplitude variation leads only to an insignificant broadening of 

spectral line without causing spectral line shifts. 

 

Lastly, we consider the effect of γ0k=γ0+Δγk: 
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Figure 4 indicates that the linear variation in γ0 does not lead to shifts in spectral peaks either, but 

changes their shapes. 

 

 

Figure 1. Spectrum of coherent pulse sequence with linearly varying Φ0 

 

 

Figure 2. Spectrum of coherent pulse sequence with linearly varying τ0 
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Figure 3. Spectrum of coherent pulse sequence with linearly varying H0 

 

Figure 4. Spectrum of coherent pulse sequence with linearly varying γ0 

 

Thus, the observed shift in the spectrum of the quasi-monochromatic signal is induced only by the 

temporal variation in the transfer function phase. Yet the phase is also the most rapidly changing quantity. 

 

A multipath radio channel is a sum of single-path channels; therefore a transfer function is also 

a sum of transfer functions of separate rays.   

 

Let there be several rays, each represented at a receiving point as 
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Hence, a signal at a receiving point is a vector sum of amplitudes of separate rays. In the stationary 

case, we have a purely harmonic oscillation with an amplitude and phase. In the non-stationary case, 

parameters of each of the rays continuously vary with time. This results in a continuous variation in 

their sum. Yet parameters of each ray vary with variations in parameters of a medium. Each of the rays 

is a quasi-monochromatic signal, but a signal composed of the sum of these rays at a receiving point is 

noise-like due to interference of these rays.  
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When modeling the Doppler frequency shift, we account only for the phase variation in the 

transfer function of the channel, ignoring other parameters. Thus, the simplest algorithm for measuring 

the Doppler frequency shift can be represented as follows:  

1. A coherent pulse sequence is generated. 

2. At a receiving point, we separate pulses according to delays and correlate them with particular 

channels. 

3. For each pulse, we determine its mean phase, thus obtaining a phase-time diagram for each channel. 

4. We transform the phase-time diagram to a frequency-time one, operating on the premise that 

the frequency is a time derivative of phase. 

 

Notice that the pulse phase can be determined only with accuracy to 2πn with n being an integer. In 

order to maintain continuity and unambiguity in the determination of phase, we should impose a 

condition such that the phase difference between pulses should not exceed π in modulus. In the HF 

ionospheric radio channel, the Doppler frequency shift does not normally exceed 10 Hz. Given the 

maximum phase difference between pulses and the maximum rate of frequency change, we can obtain 

a restriction on the pulse-repetition period T: 

max

1
,

2
T

f
  (14) 

where fmax is an expected maximum frequency shift. For fmax of about 10 Hz, T should not exceed 0.05 s.  

 

MODELLING 

 

We model the Doppler shift, using the method of normal waves. This approach (unlike the 

geometrical one) allows us to model field variations at a certain point of space, thus making it possible to 

trace smooth variations in pulse phases. 

 

In the method of normal waves, the channel transfer function [Kurkin et al., 1981] can be written as  
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where An is a system coefficient, r0 is a height of a transmitter, r and θ are coordinates of a receiver, In are 

excitation  coefficients, a is the Earth radius, k is a wave number, γn is an eigen value of radial operator.  

 

For fixed transmitting and receiving points in the case of a quasi-monochromatic signal at the carrier 

frequency ω0, the sum are split into several sums corresponding to rays in geometrical optics [Potekhin, 

Orlov, 1981]. This allows us to utilize terminology of geometrical optics. 

 

As an example, we take the ionosphere to be the mutipath radio channel, presenting its normalized 

electron-density profile in the form of two quasi-parabolas [Kurkin et al., 1981]: 
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where a is the Earth radius, h is a height, hb is the height of the beginning of the ionosphere, hm is the maximum 

ionization height , h0 is a matching point, and d1 and d2 are defined by 
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The critical frequency varies with time according to the law  
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where af=0.01 and Т=7200 s. 

 

The position of the point at the beginning of the ionosphere also changes: 
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where аh=0.000785. 

 

We have selected the following initial values of ionospheric parameters: the height of the lower boundary 

of the ionosphere is 90 km, the matching point is 195 km, the maximum ionization height is 300 km, and the 

critical frequency is 6 MHz. Through this radio channel, we run a sequence of coherent pulses with a 10 MHz 

carrier signal frequency and 120 µs pulse duration. The distance between transmitting and receiving 

points is 3500 km. 

 

We modeled propagation of one pulse through the ionospheric radio channel for each moment of 

time. At the receiving point, after demodulation, we separated the pulses with respect to delays and for 

each pulse we found mean amplitude and phase. The pulse-repetition period was taken to be 0.05 s. 

 

Phases of particular rays obtained from the modeling of propagation of the coherent pulse sequence 

through the ionospheric radio channel are shown in Figure 5. Four rays arrive at the receiving point: two 

double-hop and two triple-hope ones. It is apparent that lower rays are more sensitive to variations in 

parameters of the lower ionosphere where regions of their reflection are located. At the same time, upper 

rays are more sensitive to variations in characteristics of the upper ionosphere (in this case, to critical 

frequency change). Yet in both the cases, double-hop rays appear to be most sensitive. This behavior 

agrees well with the physical notion of the process. 
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The Doppler frequency shift is defined as a phase variation rate (Figure 6). Thus, we can observe the 

fine structure of the Doppler frequency shift depending on variations in parameters of a medium. 

 

Figure 7 presents the results of the modeling of propagation of a 10 MHz continuous quasi-

monochromatic signal. Owing to strong interference and infinitesimality of frequency shifts, as indicated 

above, it is not always possible to determine the Doppler shift of a separate ray in the general case. 

 

CONCLUSION 

 

We have analyzed a method of measuring the Doppler frequency shift in multipath radio channels 

for each ray represented by a coherent pulse sequence. The method allows us to thoroughly monitor 

variations in radio channel parameters (fine structure).   

 

 

Figure 5. Phases of separate pulses 

 

 

Figure 6. Doppler frequency shift in separate pulses 
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Figure 7. Continuous signal 

 

We have shown that the greatest contribution to the Doppler frequency shift is made by phase 

variations in a channel transfer function. 

 

We utilized this method to model propagation of the coherent pulse sequence in the simplest case of 

the plane-stratified ionosphere having parameters slowly varying with time. The modeling results indicate 

that variations in characteristics of a separate ray are caused by variations in ionospheric parameters in 

reflection regions. This qualitatively agrees with experimental data.  

 

Thus, using a model of ionospheric dynamics, we can analyze phase and amplitude variations in 

separate rays. Yet variations in ray parameters are actually caused only by variations in ionospheric 

parameters in reflection regions. This can allow us to determine the nature of the Doppler frequency shift 

and to find out if there are any peculiarities in the manifestation of the Doppler effect typical for this 

model of ionospheric dynamics. 

 

The work was funded by RFBR (No.13-05-00979-a). 
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