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This article addresses methodical issues concerning the modeling of the Dst variation in a geomagnetic storm. 

We describe the so-called RBM (Russell — Burton — McPherron) model representing an ordinary differential 

equation with solutions simulating the relation between the Dst variation and the azimuthal component of the 

interplanetary electric field. Special attention is paid to the threshold nature of Dst variation excitation. We 

would like to emphasize the necessity of stochastic extension of the RBM model by taking into account 

fluctuations inherent to any physical system. The integral representation of a Dst variation bifurcation diagram 

is given. It enables us to account for the effect of fluctuations that eliminate the diagram root singularity and 

cause a threshold point shift. The Dst variation is shown to be typical of the wide class of threshold phenomena 

similar to second-order phase transitions. We draw an analogy with threshold phenomena in Earth’s 

magnetosphere, atmosphere, and lithosphere. In addition, we briefly discuss the issue about soft and hard 

passages through the threshold, as well as about explosive instability in geophysical media. 

 

Keywords: Magnetosphere, phase transition, bifurcation, fluctuations, explosive instability, atmosphere, 

lithosphere.  

________________________________________________________________________________ 

 

INTRODUCTION 

 

The solar wind and interplanetary magnetic field surprisingly constantly cause usually smooth and 

sometimes abrupt changes in Earth's magnetosphere. This paper considers one example of such changes 

in the most simplified form. The case in hand is a magnetic storm. Attention here focuses on a storm-time 

variation (Dst) representing the most important magnetic storm effect [Nishida, 1980]. 

 

The phenomenological theory of Dst variation is proposed in [Burton et al., 1975]. It has the form of 

the first-order differential equation with solutions simulating the relationship between the Dst variation 

and the azimuthal component of the interplanetary electric field. We call this equation RBM (Russell — 

Burton — McPherron) model as in [Guglielmi, Pokhotelov, 1996]. In [Guglielmi, 1988], this model was 

refined, and in [Guglielmi et al., 1989] the proposed modification was experimentally justified. 

 

The RBM model falls into the type of so-called toy models that are widely used in theoretical 

physics and astrophysics for describing very intricate and/or not entirely understood processes. The 

magnetic storm complexity needs little comment. The complexity itself justifies the use of the 

phenomenological reduction and extremely simple mathematical tools to formalize observations without 
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making unmotivated hypotheses ad hoc. However, in addition to the complexity there is an incompletely 

solved problem, namely, the problem of reconnection of interplanetary and geomagnetic field lines. The 

reconnection produces ring current sources generating the Dst variation [Nishida, 1980]. Reconnection physics 

is not fully understood [Goldstein, 2001], but the phenomenology of reconnection is relatively simple [Dungey, 

1961]. This very circumstance in due course opened up the possibility for building the RBM model. 

 

The present paper is methodological and debatable. Section 1 describes the modified RBM model. 

Special attention here is paid to the threshold character of Dst variation excitation. Section 2 highlights the 

need for stochastic extension of the RBM model by allowing for fluctuations influencing the formation of 

Dst variation. Section 3 gives an integral representation of bifurcation diagram of a ring current source. 

This facilitates the consideration of the effect of fluctuations that eliminate the root singularity at a 

threshold point. Section 4 shows that the Dst variation belongs to a broad class of threshold phenomena 

akin to second-order phase transitions. We draw an analogy with threshold phenomena in Earth's 

magnetosphere, atmosphere and lithosphere. In addition, we briefly discuss the issues about soft and hard 

passages of physical systems through the threshold, as well as about explosive instability in geophysical 

media. The final section succinctly summarizes analysis findings. 

 

1. RBM MODEL 

 

The modified RBM model looks as follows. Let E(t) be an azimuthal component of the 

interplanetary electric field, and q(t) be a ring current source responsible for a Dst-variation, with 

q≥0. Instead of Dst, it is convenient to employ  

D=a+bp1/2–Dst ,  (1) 

proportional to the ring current intensity. Here p is the solar wind dynamic pressure. In what follows, the 

numerical values of a and b are not needed. The evolution of D(t) is described by the equation  

dD/dt=q–D/τ,    (2) 

where τ is the time of ring current decay. Accurate within the proportionality coefficient, the dependence 

of q on E is as follows: q=0 if E<Ec, and q=(E–Ec)
1/2 if E≥Ec. Here Ec is the critical (threshold) value of 

the azimuthal component of the interplanetary electric field (see Figure 1). The threshold character of the 

q dependence on E suggests that we deal with instability. This is also confirmed by physical 

considerations on the geomagnetic and interplanetary magnetic field line reconnection. This reconnection 

appears to induce the Dst variation. 

 

Introduce the potential U(q, E) and consider the dynamic system  

dq/dt=–¶U/¶q,    (3) 

that provides metaphorical understanding of the origin of the q dependence on E. Redefine the 

dimensions t and q in such a way as to avoid overloading the description with unnecessary proportionality 

coefficients, and assume  

U=(Ec–E) q2/2+q4/4.      (4) 
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fluctuations in nonlinear equation (3) is more interesting than in linear equation (2). Treating Equation 

(3), put ourselves the second question: what fluctuations – additive or multiplicative – should first be 

selected for the analysis? If it is a model with additive fluctuations, then to the right side of (3) we should 

add a Langevin source. The origin of such a fluctuation source is still not quite clear. The introduction of 

the Langevin source would be a typical hypothesis ad hoc. At the same time, the idea of the existence of a 

multiplicative source needs no additional hypotheses. It naturally stems from the structure of U(q, E). The 

control parameter E undergoes fluctuations associated with the presence of MHD waves in the solar wind. 

Since the control parameter is involved in (4) as Eq2, the MHD waves generate the multiplicative 

fluctuations that should be accounted for in the stochastic extension of (3).  

 

The third question refers to the origin and spectral and temporal structure of the control-parameter 

fluctuations. Here we give only general information. Before a near-Earth shock front there permanently 

exist turbulent pulsations in the electromagnetic field with their spectrum covering a frequency range 

from mHz to several kHz [Russell, Hoppe, 1983]. These pulsations arise from the nontrivial interaction of 

solar wind ions and electrons with the shock front. Wave disturbances also occur in the free solar wind. 

They propagate from the Sun as Alfvén waves and also appear in interplanetary space between the Sun 

and Earth due to fire-hose and other instabilities of interplanetary plasma.  

 

3.  INTEGRAL REPRESENTATION 

 

In this case, the problem is to find an appropriate form for the stochastic extension of the RBM 

model. Consider Figure 1 once again. This figure indicates that in dynamic representation the q value near 

the threshold is proportional to the square root of the interplanetary electric field E. Notice an interesting 

analogy: in some cases the nuclear reaction cross-section is also proportional to the square root of energy 

of a particle bumping into a nucleus. This observation suggested the possibility of utilizing the procedure 

proposed in [Migdal, 1975].  

 

Assume first that there are no fluctuations in the interplanetary electric field. Introduce the integral 

representation for q(E): 

   
c

' ' '
c .

E

q E E E E E dE


     (5) 

It is readily seen that it is no more than a new analytical expression for the function shown in Figure 1. 

In actual fact, from (5) it follows that q=0 if E<Ec and cq E E   if E>Ec as is shown in Figure 1.  

 

However, under real conditions, the value of the interplanetary electric field is far from being fixed. 

It fluctuates about a mean value of E. Integral representation (5) suggests that we should change the delta 

function to a relevant distribution function: 

   
c

' ' '
c .

E

q E f E E E E dE


    (6) 
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freedom of the magnetosphere and solar wind. If necessary, neglected degrees of freedom can be included 

in the theory as additive or multiplicative noises. This situation is by no means unique. Geophysics deals 

with many threshold events akin to second-order phase transitions. Several typical examples are given 

below. In each of them, we can allow for fluctuations through the integral representation of bifurcation 

diagram just as we have made in the stochastic extension of the RBM model of Dst variation.  

 

As a well-known example we can point to self-excitation of ion-cyclotron waves in Earth's radiation 

belt. In this case, it is possible to explicitly find the threshold and determine the evolution of the system in 

crossing the threshold from fundamental equations of plasma electrodynamics [Guglielmi, Pokhotelov, 1996; 

Kangas et al., 1998]. However, many other cases defy sequential analysis based on general principles. 

Instead, we have to build phenomenological models from observations and physical considerations. 

A typical example is the model of wind-driven generation of atmospheric electricity at the drifting ice 

station North Pole – 22 [Guglielmi et al., 1979]. The control parameter is a wind speed. The critical speed 

of 4 m/s was found from observations and was substantiated by general considerations for electrification 

of snow and ice particles in airflow. Another example refers to the liquid motion in pores and cracks of 

rocks. The velocity V of the fluid flow in porous media is usually described by Darcy's law V=KDI where 

KD is a linear filtration coefficient and I is a pressure gradient [Collins, 1964]. However, experience has 

shown that there are filtration mechanisms that require us to make corrections to Darcy's linear law. In 

particular, the effective permeability coefficient K(I, δI) with I=0 is  

  c
D

0

1
0, 1 erf ,

2I

IdV
K I K

dI I

  
       

 (9) 

where δI denotes pressure gradient fluctuations, Ic is the so-called Zlochevskaya's threshold [Guglielmi, 

2002]. It means that the permeability coefficient calculated in a laboratory on a real rock sample will be 

below the Darcy coefficient KD. 

 

Experience of phenomenological modeling of threshold phenomena suggests that sometimes the 

common form of a geophysical process indicates the form of a transition curve and even enables us to 

guess the form of a differential equation describing the process as in the modeling of the Dst variation. 

The right choice of the evolution equation is particularly important in trying to go beyond the scope of the 

class of phenomena, we considered, that are similar to second-order phase transitions. In some cases, the 

simple equation for a damped oscillator with quadratic nonlinearity  

dx/dt+αx=βx2  (10) 

may be a useful initial model in answering the question about the type of the dynamic system whose 

evolution is observed in the experiment. Illustrate the above with an example of self-excitation of ion-

cyclotron oscillations in Earth's radiation belt. In this case, x is the intensity of oscillations, α is the 

control parameter dependent on proton anisotropy in the radiation belt with a threshold value α=0 

[Guglielmi, Pokhotelov, 1996]. The dynamic system type is defined by the sign of β. It is normally 

assumed that β<0 [Kangas et al., 1998]. If so, we have a self-oscillation system with soft self-excitation. 

The system status x continuously depends on α, but the α derivative of x experiences a jump at a threshold 
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point. In other words, if β<0, then the self-excitation of ion-cyclotron oscillations in the radiation belt 

should be assigned to the same class as the Dst variation. Note, however, that the hypothesis on hard self-

excitation that occurs at β>0 cannot be ruled out for now. There are observations indirectly indicating that 

the oscillation intensity x, and not only the α derivative of x, discontinues at the critical point α=0. The 

question about the self-excitation mode in the radiation belt is underexplored and controversial.  

 

The search for and study of systems with hard self-excitation in geophysical media are of obvious 

interest. Of particular interest is the case of explosive instability with which x→∞ over a finite time 

interval. Equation (10) simulates the explosive instability at α>0, β>0, and sufficiently large initial values 

of x0. Let, for simplicity, x0>>α/β. Then 

    1

0 01 / ,x t x t t
   (11) 

where t0=(βx0)
–1. The value x →∞ if t→t0. It means that in respect, for example, to a rigid body the 

explosive instability inevitably leads to its fracture in a time t0. We can assume that the explosive 

instability occurs sporadically during formation of the main rupture in an earthquake focus, magnetic field 

line reconnection in the neutral layer of the geomagnetic tail, and most likely in many other natural 

phenomena. 

 

Turn once more to Equation (10). Omit the second term from the left side, set β=–1 and write the 

equation as dn/dt=–n2. This equation is of no concern to physics of threshold phenomena. It describes, for 

example, the recombination that causes a monotonous decrease in the number n of pairs of oppositely 

charged particles in ionospheric plasma. However, we call your attention to an interesting circumstance. 

The solution of n~t–1 simulates Omori's empirical law that circumscribes a monotonous decrease in the 

number of aftershocks with the course of time after a strong earthquake [Omori, 1894]. Perhaps it is 

merely a coincidence. Yet it would be interesting to try to see sense in the analogy between the dynamics 

of aftershocks and the recombination of oppositely charged particles in ionospheric plasma. In this regard, 

we can make the following comments. 

 

It is well known that the quadratic nonlinearity in the recombination equation appears due to binary 

collisions at equal concentrations of positively and negatively charged particles (the equality is very 

accurate in plasma). If we attach any significance to our attempt, we should perhaps pay attention to the 

remote resemblance between the pair of oppositely charged particles in plasma and the pair of sides of 

fault in the earth's crust. Continuing this line of reasoning, we have to make the next step and with all 

necessary reservations draw an analogy between the mean waiting time of collision of the pair of 

oppositely charged particles and the mean time of activation of the pair of adjacent sides of fault. Thus we 

can attempt to construct a recombination model of aftershock sequence. 

 

To be sure, these considerations are incomplete. They have not advanced our understanding of 

earthquake physics so far. And it is not inconceivable that it was merely a coincidence. In this case, the 

equation dn/dt=–n2 has to be considered only as an equivalent form of Omori's empirical law. However, 

even in this case an additional opportunity arises to seek for corrections to Omori's law. For example, if in 
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dn/dt = –n2 the diffuse term is taken into account, i.e. is written as 

2 2/ ,n t n D n       (12) 

then the transition to the classical equation FKPP well-known in mathematics and biology is immediate 

[Fisher, 1937; Kolmogorov et al., 1937]. Using the variety of solutions of the FKPP equation, we extend our 

possibilities of searching for adequate models of spatio-temporal distribution of aftershocks. 

 

CONCLUSION 

 

This paper has addressed issues of the phenomenological modeling of the Dst variation. We 

described the modified RBM model and posed a question concerning the need for stochastic extension of 

this model. Attention was given to the formal similarity between threshold features in the theory of 

nuclear reactions and in the theory of Dst variation. This allowed us to use the integral representation of 

bifurcation diagram well-known in the quantum theory. Besides, this enabled us to account for the 

influence of fluctuations that eliminate the root singularity of the diagram and cause a threshold point 

shift. I think that it is especially important that the Dst variation belongs to the broad class of 

magnetospheric, atmospheric, and lithospheric phenomena akin to second-order phase transitions.  

 

I thank A.S. Potapov for taking an interest in this work and helpful comments. The study was carried out 

as part of RFBR projects 15-05-00491 and 16-05-00056.  
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