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The paper deals with generation of Alfvén plasma disturbances in magnetic flux tubes through exploding laser 

plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves 

seem to provide energy transfer from the solar photosphere to the corona. The studies were carried out at 

experimental stand KI-1 representing a high-vacuum chamber 1.2 m in diameter, 5 m in length, external 

magnetic field up to 500 G along the chamber axis, and up to 2·10–6 Torr pressure in operating mode. Laser 

plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser 

plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube 

15–20 cm in radius was experimentally simulated along the chamber axis and the external magnetic field 

direction. Also, the plasma density distribution in the tube was measured. Alfvén wave propagation along the 

magnetic field was registered from disturbance of the magnetic field transverse component Bφ and field-

aligned current Jz. The disturbances propagate at a near-Alfvén velocity 70–90 km/s and they are of left-hand 

circular polarization of the transverse component of magnetic field. Presumably, the Alfvén wave is generated 

by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. A 

right-hand polarized high-frequency whistler predictor was registered which propagated before the Alfvén 

wave at a velocity of 300 km/s. The polarization direction changed with the Alfvén wave coming. Features of a 

slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous 

displacement of the external magnetic field were found. The disturbance propagates at ~20–30 km/s velocity, 

which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance 

transfers about 10 % of the original energy of laser plasma.  

 

Keywords: solar corona heating, magnetic flux tubes, Alfvén waves, slow magnetosonic waves, 

whistlers, magnetic laminar mechanism. 
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INTRODUCTION 

 
The problem of heating of the solar corona is well known in solar research. The temperature of the solar 

surface (the photosphere) is approximately 5800 °C, whereas the temperature of the solar corona exceeds it by 

several orders of magnitude [Prist, 1985]. There are different hypotheses explaining the corona heating up to so 

high temperatures. One of the hypotheses assumes that energy is transferred from the solar surface to the 

corona by Alfvén waves (AW) or slow magnetosonic waves propagating in plasma. These waves propagate 

inside the plasma in the external magnetic field. Plasma particles move predominantly along magnetic field 

lines and, given sufficient field strength, form the so-called magnetic plasma tube along a magnetic field line. 

This paper presents the results of experimental simulation of plasma processes in tubes that begin and end in 

the photosphere, but are largely situated in the solar atmosphere (in the corona). The simulation experiments 

are generally used to study the generation of Alfvén and slow magnetosonic waves (and perhaps of 

accompanying shock waves) at the stand KI-1 with laser plasma blobs injected in a cone with ~1 sr opening 

and its axis along the magnetic field B0 (initial configuration of the laser plasma (LP) cloud is a directional 

explosion). This is characteristic for generation and propagation of Alfvén and slow magnetosonic waves in the 

solar atmosphere. In addition, these experiments have provided data on fast high-frequency disturbances – 

electron whistlers propagating in magnetic flux tubes at a velocity higher than the Alfvén velocity and 

preceding Alfvén and slow magnetosonic waves. 

 

One of the main objectives of these simulation experiments is to explore the possibility of generating 

torsional Alfvén waves (TAW) and their propagation in plasma structures imitating magnetic flux tubes 

in the solar atmosphere. Such waves induced by torsional movements (in azimuth) on the surface of the 

photosphere [Antolin, Shibata, 2010] are nowadays considered to be one of the most effective sources of 

corona heating [De Moortel, Nakaryakov, 2012; Antolin et al., 2015; Okamoto et al., 2015]. The new 

simulation experiments at the stand KI-1 have been initiated by calculations [Tishchenko, Shaikhislamov, 

2010, 2014; Tishchenko, et al. 2014, 2015] of formation of cylindrical channels along a magnetic field 

(like a magnetic flux tube) with LP blobs propagating inside (together with their generated Alfvén and 

magnetosonic waves), as well as by results of previous experiments with LP [Antonov et al., 1985; 

Zakharov et al., 2006; Shaikhislamov et al., 2015] in simulation of different nonstationary processes in 

space plasma [Vshivkov et al., 1987; Brady et al., 2009; Dudnikova et al., 1990; Mourenas et al., 2006; 

Ponomarenko et al. 2007, 2008; Zakharov 2002, 2003; Zakharov et al., 2009]. Experiments in TAW 

generation and propagation have been carried out before but only in background plasma (BP) with 

transverse sizes L comparable to those of antenna [Muller, 1974] or chamber walls [Wilcox et al., 1961], 

or with large L but without magnetoplasma structures of magnetic-tube type, i.e. more likely in 

homogeneous infinite background plasma [Yagai et al., 2003] with inherent dispersion and polarization 

characteristics of TAW.  

 

Another new and important problem of TAW simulation is the method for generating just torsional 

Alfvén waves. It should, where possible, most closely fit in-situ conditions – shear and torsion displacement of 

magnetic field lines (in the photosphere). In this respect, a more advanced mechanism is the so-called magnetic 
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laminar mechanism (MLM) for collisionless interaction [Bashurin et al., 1983] between super-Alfvénic plasma 

flows propagating across the magnetic field B0. This mechanism was first confirmed experimentally at the 

stand KI-1 [Antonov et al., 1985] and afterwards in [Shaikhislamov et al., 2015]. The authors examined in 

more detail the main mechanism of magnetic laminar collisionless interaction – LP and BP electron exchange 

responsible in this case for the size R* (see Table) of a diamagnetic cavity [Wright, 1971]. As for TAW 

generation, an important property of MLM is the formation of vortex electric fields Eφ, which accelerate 

background plasma ions along with the magnetic field frozen in it, on scales R* [Prokopov et al., 2016]. This 

gives rise (at angles 45° to the field B0) to a system of Bφ fields with strength up to B0/2, [Bashurin et al., 

1983]. Together with Eφ, it can generate TAW quite effectively. Indeed, subsequent complex calculations from 

MLM [Winske, Gary, 2007] showed the formation of Alfvénic magnetic field disturbances nearby the Z axis 

(along B0) outside the spherical plasma cloud. 

 

This paper presents the first results of the experimental simulation of TAW generation just through 

MLM, although the experimental setup can also activate other generation mechanisms treated only 

theoretically so far [Oraevsky et al., 2002; Vranjes, 2015]. 

 
1. EXPERIMENTAL DESIGN 

 
Figure 1 illustrates the design of the experiment “Duplet” at the experimental stand KI-1 devised at 

the Institute of Laser Physics of Siberian Branch of the Russian Academy of Science [Zakharov, 2003]. A 

high-vacuum chamber 5 m in length and 1.2 m in diameter is filled by background plasma (H+ or He+) 

from a θ-pinch-type source at an initial pressure of ~10–6 Torr in operating mode. Laser plasma (LP) 

blobs can be generated by two independent laser CO2 microsecond systems (LUI, ZG2) with close 

emission parameters (to 200 J) focused on a flat or convex polyethylene target (the laser focal spot is  

2.5 cm). The external magnetic field B0 up to 500 G along the chamber axis is produced by quasi-

stationary sources delivering current to the solenoid covering the entire external surface of the chamber. 

Plasma in the chamber was examined using double Langmuir probes P1, combined with magnetic probes 

Mz and M, and P0 with magnetic probes Br, Bz, and Bf, as well as a pair of probes IK1, IK2 with 

corresponding three-component magnetic probes RM1 and RM2 (L, T, H). To directly register the field-

aligned currents Jz driven by AW-generated disturbances of the background [Oraevsky et al., 2002; 

Nieman et al., 2013], we employed the Rogowski loop 5 cm in diameter electrostatically shielded from 

interferences of plasma potential (like the magnetic probes). Micro-collectors KB1 and KB2 of directed 

ion flow Ji=eznVi with concentration n and velocity Vi were generally utilized to register such flows 

along the Z axis; and the KB3 probes in the form of symmetric double electrodes of radius exceeding the 

Debye radius rD, to estimate Ji and electron plasma temperature Te. 

 

Key parameters and similarity criteria of the experiment “Duplet” are listed in Table with regard to 

characteristic velocities in background plasma (BP) for a given problem.  

 

The major dimensionless criteria given in Table are sufficient to conduct only standard (for the main 

program of the stand KI-1) experiments in simulation of processes and phenomena with clouds of 
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exploding space plasma [Zakharov, 2003]. They are, however, only tentative for this study – it basically 

relies on physical simulation in which the main thing is to simulate key conditions of laboratory 

implementation of certain processes of interest, specifically of TAW generation and propagation in 

magnetic tubes. A critical factor in successful solution of this problem was the discovered phenomenon 

(see Section 3) of formation of a magnetic-tube-type extended structure (at least 2 m long) during 

interaction between LP blobs and magnetized BP with the transverse size of channeling in the order of the 

radius of the LP diamagnetic cavity. This result can be essential not only for physics of active solar 

phenomena, but also for the analysis of previously performed experiments and for the design of new 

active experiments [Oraevsky et al., 2002] in Earth’s magnetosphere. 

 

2. PROBLEM DESCRIPTION 

  

The chief problem of laboratory experiments in MHD simulation of processes and phenomena in 

space plasma [Zakharov, 2003] is insufficiently large sizes (L~1 m) of common plasma devices. Since in 

this case the wavelength >>C/pi there is a need to use background plasma with higher concentration n* 

up to 1014 cm–3 or to develop a device with a very extended longitudinal magnetic field L10 m. It is 

reasonable that almost all experiments in generation and exploration of Alfvén waves are performed in 

accord with the former variant (VINETA [Rahbarina et al., 2010], HELIX [Kline, Scime, 2003], and 

HITOP devices [Yagai et al., 2003]). Experiments by the latter variant are carried out only at the Large 

Plasma Device (LAPD) [Gekelman et al., 2003; Niemann et al., 2013] L 19 m long and with low-

density gas-discharge plasma n*≥1012 cm–3. Experimental capabilities of ILP SB RAS’s stand KI-1 

enable us to study AW propagation and interaction as well as to examine essential processes of their 

generation just through clouds of exploding (laser in particular) plasma as a possible flare-associated 

source of AW on the Sun [Vranjes, 2015]. 

 

Explosive plasma bursts as an AW source differ considerably from the most frequently considered 

diverse instabilities (or current and magnetic field generators); however, they can most naturally 

reproduce their accompanying processes of injection of energetic plasma blobs into background plasma 

along with AW generation. Therefore, although the chosen setup of the simulation experiment hampers 

interpretation of its results (as opposed to the injection across magnetic field with a cone axis of 

expanding LP being perpendicular to the external magnetic field B0 [Niemann et al., 2013] and with an 

LP blob emerging in the AW’s “tail” part moving along the magnetic field), it allows us to study AW 

effects of not only their concurrently generated electron whistlers, but also of slow magnetosonic waves.  

 

 



On the possibility for laboratory simulation of generation of Alfvén disturbances in magnetic tubes in the solar atmosphere 

23 
 

 

Figure 1. Diagram of the experimental stand KI-1: 1 is a symmetry axis of the chamber; 2 is a central section of 

the chamber; 3 is a laser target; 4 is θ-pinch. The diagram shows two positions of the P1 probe at different stages of 

the experiment 

 
Parameters of the experiment 

Dimensional parameters 

Concentration of Н+/He+ background plasma, n* (0.53.5)·1013 cm–3 

Ion skin-scale (with respect to background) C/pi~4 cm 

Magnetic field in the chamber (in the background) B0=100÷500 G 

Cloud front velocity in vacuum without magnetic field (in 
vacuum in the magnetic field) 

V0150 km/s (VM≈90 km/s) 

Kinetic energy of LP blob (effective E0=Ek·4/, with total 

effective number N0 of LP electrons) 

Ek~10 J (E0=30 J and N0~1018 with the 
effective energy traditionally defined as 
E0=0.3N0(m/z)V0

2) 

Radius of LP deceleration by the magnetic field B0 in vacuum 

(cavity radius) 

Rb=(3E0/B0
2)1/3~30 cm with respect to 

LP geometry at B0=175 G 

Background electron temperature Te
*~10÷20 eV 

Mean free path of LP ions in the background with respect to the 

initial velocity V0 (or with respect to their twice reduced velocity 

relative to the background to VR) 

ii
*~200 cm in ion-ion Coulomb collisions (to 

20 cm at VR60 km/s in the H+ background) 

Alfvén velocity. Alfvén wavelength (along the Z axis) CA=70 km/s, А~50 cm (B0=175 G, the 

background is hydrogen, n*=3·1013 cm–3) 

Sizes of background plasma along (Zf) and across (Rf) are ~100–200 cm and 20 cm 

Dimensionless similarity criteria 

Alfvén–Mach number MA=VM/CA≥1 

Lpi=(C/pi)/Rb Lpi~0.5 

Magnetized cloud ions with its charge and 
mass profile <mi/Zi>≈2.6 amu. 

b=RL/Rb=0.7 (1) with the Larmor radius of cloud ions 

RL=21 cm 

Cloud cavity radius in the background R*(3N0/4πn*)1/320 cm 

The MLM parameter in the H+ background =R*2/RLRL
*~2.5 with the Larmor radius of cloud ions RL≈20 cm, 

background ions RL
*≈8 cm (V0), and a lower expansion velocity 

of  ~0.7V0 (at ~45° to the target normal) 

Plasma β =8nkTe
*/B0

2~0.5 

Knudsen number Kni=ii
*/Rb~10 (with respect to the initial velocity V0, but to 1 (!) 

at a real velocity VR60 km/s) 

Minimum requirements for sizes of medium are met at Zf>А and RfRb
* 



P.A. Prokopov, Yu.P. Zakharov, V.N. Tishchenko, E.L. Boyarintsev, A.V. Melekhov, A.G. Ponomarenko, V.G. Posukh,  
I.F. Shaikhislamov 

24 
	

Resting on similarity criteria of the problem, we analyzed the required experimental setup and 

obtained corresponding experimental parameters presented in Section 1 and below. It is significant that 

the above mentioned hypothetical MLM variant of TAW generation through B fields in the plasma cloud 

was partially and successfully tried out in Japanese experiments [Yagai et al., 2003], which involved an 

effective antenna in the form of a ring-shaped Rogowski loop connected to a surge current generator and 

producing, in the end, the very field B inside the loop and the current Jz along the field B0 through vortex 

electric fields in the background plasma. The main result of the analysis is the dependence we revealed 

for B fields proportional to δsincos [Prokopov et al., 2016]. Such dependence arises from the magnetic 

field line freezing in BP and from the initial acceleration of its ions just in azimuthal direction (as in 

torsional Alfvén waves). Thus, in this case the MLM acceleration is maximum at the equator of the cloud. 

This brings about the formation of two ring structures of opposite B fields located above and below the 

equator (at 45°) close to the boundary of the super-Alfvén plasma cloud cavity in the background with 

a standard radius R*=(3N0/4n*)1/3 for the total number of cloud electrons N0 related to its energy as 

E0=0.3(m/z)N0V0
2. Such a system of two currents (spaced along the Z axis by 1.5R*) being considered 

as a TAW generator, their excitation with wavelength 3R* could be expected. According to the 

experimental dispersion ratio for axisymmetric AW [Yagai et al., 2003], their velocity deviates from the 

MHD value (СА) at K=k  C/pi0.5 or 4С/pi; then their laboratory simulation requires a cavity size 

R*≥6С/pi25 cm, which is deliberately fulfilled in the experiment “Duplet” (see Table). Similarly to 

this spatial criterion of AW generation at sufficiently large δ~5 (that is met well enough in the 

experiment), we can also estimate the temporal criterion of deceleration Td of the LP cloud in the 

magnetized BP as Td~1.5Rb/V0>Tci
*/2, which, as inferred from data on AW generation at a given 

frequency of the B-field generator at the HITOP device [Yagai et al., 2003], is fulfilled too. Here 

Tci
*=2π/ωci is a period corresponding to ci

*, the cyclotron frequency of background ions. 

 

3. EXPERIMENTAL RESULTS 

 

3.1. Alfvén and slow magnetosonic waves 

 

All outcomes of the experiments have been obtained by implementing a plasma magnetic flux tube 

with geometry being examined in the external magnetic field of strength 100, 175, 350 G. We established 

that concentration of plasma decreases as it moves along B0 and away from the target. The magnetic flux 

tube radius is ~15–20 cm. Figure 2 depicts measurements of radial distribution of plasma concentration at 

different distances from the target. The wide spread of points is attributed to low reproducibility of the 

experimental parameters and to 15% inaccuracy in the measuring equipment.  

 

In the absence of BP and external magnetic field, the LP front velocity is ~150 km/s. When moving 

in the magnetic field, the LP front in vacuum as it exits the cavity slows down to ~100 km/s. During 

formation of the magnetic cavity, LP ions loss lateral velocity and are redirected by the magnetic field 

along the axis; therefore, the LP front in the magnetic field has a lower velocity than it does in the absence 
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The propagation velocity measured from the maximum displacement of the B0 field is 20–30 km/s; it is 

also close to the calculated ion sound velocity. According to preliminary estimates, about 10 % of laser 

pulse initial energy converts to the slow magnetosonic wave energy.  
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