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Abstract. We present and discuss properties of the 

following magnetic field models in a magnetic cloud: 

Miller–Turner solution, modified Miller–Turner solu-

tion, Romashets–Vandas toroidal and integral models, 

and Krittinatham–Ruffolo model. Helicity of the mag-

netic field in all the models is the main feature of mag-

netic clouds. The first three models describe the mag-

netic field inside an ideal torus. In the integral model, 

parameters of a generating torus ambiguously determine 

the volume and shape of the magnetic field region. In 

the Krittinatham–Ruffolo model, the cross-section radius 

of the torus is variable, thereby it corresponds more 

closely to the real form of magnetic clouds in the inner 

heliosphere. These models can be used to interpret in-

situ observations of the magnetic flux rope, to study a 

Forbush decrease in magnetic clouds and transport ef-

fects of solar energetic particles injected into a coronal 

mass ejection. 

Keywords: magnetic flux rope models, force-free 

magnetic field, magnetic field lines, toroidal magnetic 

field, magnetic cloud. 

 

INTRODUCTION 

Ejections of coronal solar matter in interplanetary 

space are called ICMEs (interplanetary coronal mass 

ejections). Along with the matter, solar magnetic loops 

emerge which have a twisted structure of magnetic field 

lines — MFR (magnetic flux rope). Scientific interest in 

the study of MFR is due to the fact that MFR: 1) deter-

mines properties of the surrounding plasma; 2) greatly 

affects propagation of solar (SCR) and galactic cosmic 

rays (GCR) in interplanetary space; 3) determines the 

level of geomagnetic activity during the interaction with 

the magnetosphere. The practical interest in the MFR 

study is explained by the fact that SCR, GCR, and geo-

magnetic activity determine space weather conditions, 

which affect the safe operation of equipment and tech-

nological systems, as well as human activity. MFR with 

solar matter in ICME is called magnetic cloud (MC). 

MC occupies the total volume of ICME or its significant 

part [Marubashi, Lepping, 2007]. To study the processes 

occurring in MCs, it is necessary to use an MFR model. 

At present there are several MFR models with different 

features. The most widely used method of detecting 

MCs is based on the comparison of direct measurements 

of magnetic field components with the MFR model 

[Burlaga,  1988, Lepping et al., 1990, Farrugia et al., 

1993, Leitner et al., 2007, Démoulin et al., 2008], which 

determines results. For example, the MC parameters 

obtained from the analysis of direct measurements with 

the use of cylindrical and toroidal MFR models differ 

significantly [Marubashi, Lepping, 2007]: 1) in the axis 

orientation of the magnetic field; 2) in cross-section 

radii (the radius in the toroidal model is smaller). Other 

authors employ different MFR models for studying 

GCR propagation in MCs: cylindrical [Kuwabara et al., 

2004], toroidal [Petuhova et al., 2015]. 

In this paper, we present and compare features of 

five MFR models. 

 

FORCE-FREE MAGNETIC FIELD 

MODEL  

As an MFR model the force-free magnetic field is 

often utilized. The force-free magnetic field satisfies the 

relation 

0,j B   

where j  is the electric current density, В  is the mag-

netic field strength. Hence it follows that the current 

flows along the magnetic field .j B  In view of Max-

well's equations, the system of equations determining the 

force-free magnetic field can be written as 

, 0,B B B      (1) 

where α is a scalar. When α is a constant or depends on 

coordinates, the magnetic field is called linear or non-

linear respectively. The second equation in (1) takes 

into account the solenoidal condition. 

In real MCs, it is difficult to identify the force-free 

character of the magnetic field. In theoretical models, the 

similarity of the magnetic field to the force-free one is de-

termined from the angle between В  and B ; in the 

force-free field this angle is zero [Vandas, Romashets, 

2015]. 

 

LUNDQUIST SOLUTION 

A solution of system of equations (1) for an infinite-

ly extended cylinder has been put forward by Lundquist 

[Lundquist, 1950]. Components of the linear force-free 

field in the cylindrical coordinate system have the form 

1 00, , ,zB B AJ B AJ       

where 0 1,J J  are the Bessel functions of the first kind 

of zero and first orders; A= ±B 0 , where B0 is the field 

strength on the cylinder axis; αρ is the argument of the 
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Bessel functions; ρ is the distance from the cylinder 

axis; α=± 2.41/ρ0, where ρ0 is the radius of cylinder 

cross-section. The solution accounts for the boundary 

condition Bz(ρ0)=0, which is obtained taking into 

account J0(2.41)=0 — the first root of J0. The frame 

of the cylindrical coordinate system satisfies the vec-

tor product ,zi i i    where , , zi   are unit vectors. 

The Lundquist solution includes four variants of 

magnetic field geometry: to each value of Bz corre-

sponds left- or right-handed helicity. On the surface 

of each cylinder with ρ≤ρ0 there are twisted magnetic 

field lines with their own step. The step changes from 

infinite on the cylinder axis to zero on its surface. 

The field strength decreases monotonically by a fac-

tor of two in the direction from the cylinder axis to 

the surface. 

 

MILLER–TURNER SOLUTION 

Miller and Turner calculated the magnetic field in 

a torus [Miller, Turner, 1981]. They used the quasi-

toroidal coordinate system related to Cartesian coor-

dinates as follows 

x=(R+ρcosθ)cosφ,  

y=(R+ρcosθ)sinφ,  (2) 

z=ρsinθ,  

where R is the torus axis radius located in the XOY 

plane; ρ is the distance from the torus axis in the per-

pendicular plane, 0≤ρ≤ρ0, where ρ0 is the cross-section 

radius of the torus; θ is the angle in this plane counted 

from XOY toward the Z-axis (0≤θ≤2π); φ is the angle of 

this plane counted from the X-axis toward the Y-axis 

(0≤φ≤2π). The center of the Cartesian coordinate system 

coincides with the center of the torus. The frame of the 

quasi-toroidal coordinate system satisfies the vector 

product 

,i i i      

where , ,i   are unit vectors. The choice of the frame 

has an effect on the form of the   operator in the first 

equation of (1).  

When accounting for the symmetry along the torus axis 

(∂/∂φ=0), we can write the solution as 

0 sin ,
2

A
B J

R
  


  

 1 0 1

1
cos ,

2
B A J J J

R


 
      

  (3) 

0

cos
1 .

2
B A J

R


  
  

 
  

Notations in (3) coincide with those in the Lundquist 

solution. When R → ∞, (3) and Lundquist solutions 

coincide. Solution (3) is approximately force-free (it is 

supposed that ρ0/R<<1) and satisfies the equation 

,B B H      

where H  is the discrepancy. It can be calculated by 

substituting solution (3) in the equation. This yields 

   01.5 cos sin cos / cos .H AJ i i R R        

Solution (3) approximately satisfies the solenoidal con-

dition  

 13 sin cos / 2 cos .B AJ R R         

Using relations (2), we obtain the metric coefficients 

hρ=1, hθ=ρ, hφ=R+ρcosθ. 

To represent different magnetic field projections ei-

ther when using magnetic field components in calcula-

tions or when comparing MFR with measurements, we 

have to use the solutions in different coordinate sys-

tems. To determine the magnetic field components in a 

desired system, we should identify them in the Cartesian 

coordinate system because it connects different systems. 

To calculate the magnetic field components in the Car-

tesian system, it is necessary to use the relationship be-

tween the components in different systems. Represent 

the linear vector dr  in two systems 

.

x y zdr i dx i dy i dz i h d

i h d i h d

 

   

    

  
  

Compute the differentials dx, dy, dz through dρ, dφ, dθ 

by using (2), and substitute them in the equation. Taking 

into account the independence of the differentials, 

obtain 

cos cos cos sin sin ,x y zi i i i         

sin cos ,x yi i i      (4) 

sin cos sin sin cos .x y zi i i i          

Represent the vector for two coordinate systems: 

x x y y z zB i B i B i B i B i B i B             

and, using (4), get 

cos cos sin sin cos ,xB B B B          

cos sin cos sin sin ,yB B B B          

sin cos .zB B B      (5) 

To determine the shape of the magnetic field line, 

use the definition / .dl Bdl B  Here ,dl  dl are the vec-

tor and length of the field line element; B and B are the 

magnetic field vector and strength. From the definition 

it follows: 

/ ,d B dl h B     

/ ,d B dl h B     

/ .d B dl h B     (6) 

We plot the magnetic field line according to the recur-

rent procedure: select (ρ, θ, φ); compute Bρ, Bθ, Bφ accord-

ing to (3); calculate dρ, dθ, dφ according to (6); at a new 

point ρ+dρ, θ+dθ, φ+dφ calculate Bρ, Bθ, Bφ, etc. To deter-

mine the magnetic field line in the Cartesian coordinate 

system, use (2) and (5).  

Figure 1, a, b shows the magnetic field parameters for 

the Miller–Turner solution. Figure 1, a presents the distri- 
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Figure 1. Distribution of the relative magnetic field strength (B/B0) in the plane perpendicular to the torus axis in the Miller–Turner 

solution (a), modified Miller–Turner solution  (c), toroidal (e) and integral (g) Romashets–Vandas solutions respectively. Color indicates 

magnetic field strength according to the scale shown on the right-hand side of the Figures. Black curves and numbers near them are iso-

lines of the magnetic field strength. White curves are field line projections for three variants differing in x coordinate of the starting point 

of the field line. For panels a, c, e, the coordinates of the starting point of field lines are y=0, z=0, x/ρ0=10.95, 10.5, 10.1. For panels g, h, 

the coordinates of the starting point of field lines are y=0, z=0, x/ρ0=7.6, 7, 6.5. Panels b, d, f, h show projections of magnetic force lines 

on the XOY plane for the same three variants. The variants differ in color of magnetic field lines, shown in the top left corner 
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butions of the relative field strength (B/B0) in the plane of 

the torus cross-section and the projections of the field lines, 

located on the surface of toroids with different radii, on this 

plane. Figure 1, b shows the projections of the field lines, 

located on the surface of different toroids, on the XOY 

plane. Here, we utilize the toroidal surfaces with radii 

ρT<ρ0 , located inside the torus, as toroids. The field lines 

are seen to be on the surface of each toroid. In this case, the 

field lines are represented as helices with a step depending 

on the toroid radius: the smaller the radius, the larger the 

step. These features are typical of the force-free magnetic 

field. Figure 1, a shows that the field axis is slightly shifted 

from the center of the cross section in the direction from 

the center of the torus. At the same time, the maximum 

field strength is shifted toward the center of the torus. The 

ratio between the magnetic field strengths on the torus axis 

and surface is limited by 2. The calculation results present-

ed in Figure 1, a–f are obtained for R /ρ0=10, A=B0 , α = 

2.41/ρ0 . There are four variants of the magnetic field ge-

ometry as in the Lundquist solution. The magnetic field 

variants differ in sign of the field components; however, 

this difference has no effect on the field line projections 

depicted in Figure 1, a–f. 

 

MODIFIED MILLER–TURNER  

SOLUTION 

Romashets and Vandas [2003b] have modified the 

Miller–Turner solution. They used the vector potential 

of the modified solution 

( ) 1
,

m

A B


  

where B  is Miller–Turner solution (3). Then 

 
( ) ( ) 1 1

,
m m H

B A B B H B        
  

 

where 
( )m

B is the strength of the modified magnetic field, 

H  is the  discrepancy of the Miller–Turner solution. Us-

ing solution (3), obtain components of the modified mag-

netic field  

( ) 0 sin ( 2 cos )
,

2 ( cos )

m AJ R
B

R R


   


  
  

( ) 2

1

2

0 1 0 1

2 cos
2 ( cos )

( ) (2 )cos ,

m A
B R J R

R R

J J J J


     

    

  (7) 

( )

0 (1 cos /(2 )).mB AJ R      

Notations of the values coincide with those in (3). The 

modified solution is also approximate (ρ0/R<<1), and ex-

actly satisfies the solenoidal condition. The construction of 

magnetic field lines is similar to that in the Miller–Turner 

solution.  

Figure 1, c, d similar to Figure 1, a, b presents mag-

netic field parameters for the modified Miller–Turner 

solution. The comparison between these Figures suggests 

that the magnetic field parameters in the Miller–Turner 

solution and in their modified solution differ slightly. 

 

ROMASHETS–VANDAS SOLUTION 

To calculate the magnetic field in the torus, Romashets 

and Vandas [2003a] used the toroidal system of coordi-

nates related to Cartesian coordinates as 

sinh( )cos
,

cosh( ) cos
x

  


  
  

sinh( )sin
,

cosh( ) cos
y

  


  
  (8) 

sin
.

cosh( ) cos
z

 


  
  

Here α is the coordinate system parameter specified by 

the size of a chosen torus ρ0=α/sinh(μ0), 

R=αcosh(μ0)/sinh(μ0), R/ρ0=cosh(μ0), 
2 2

0R   

2

0 0( / ) 1,R    where ρ0 is the radius of the torus 

cross-section; R is the distance from the torus center to 

the axis; sinh(μ), cosh(μ) are hyperbolic sine and cosine. 

The parameters are determined by μ ≥ μ0, 0 ≤ η ≤ 2π, 

0 ≤ φ ≤ 2π, where μ0 corresponds to the surface of a cho-

sen torus. 

The solution of the problem can be represented as 

follows 

Bμ=0,  

13

cosh( )(cosh( ) cos )
,

2sinh ( )
B A F

    
 


  (9) 

0

cosh( ) cos
,

sinh( )
B A F

  



  

where F0=F(α0, β0, γ0, ξ), F1=F(1+α0, 1+β0, 1+γ0, ξ) are 

hypergeometric functions,  2

0 1 1 4 / 4,      

 2

0 1 1 4 / 4,      γ0=1, ξ=–sinh
–2

(μ). 

In the toroidal coordinate system, all surfaces with 

μ=const are coordinate surfaces (toroids). The surface 

with μ=μ0  coincides with the surface of the given torus, 

and surfaces with μ>μ0 describe the toroids located in-

side the torus. The surface with μ→∞ degenerates into 

the torus axis. Solution (9) represents a magnetic field 

with two components whose field lines are located on 

the surface of the toroids. The ε value is determined 

from F0(α0, β0, γ0, –sinh
–2

(μ0))=0. As follows from (9), 

in this case Bφ=0 on the torus surface. This condition is 

similar to the use of the first root of J0(2.41)=0 in the 

Lundquist solution. 

The ratios between the field components in the Car-

tesian and toroidal systems are derived from 

,x x y y z zB i B i B i B i B i B          

which takes into account that the magnetic field in the 

toroidal system has two components (Bμ=0). Unit 

vectors of the coordinate systems are related as 
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1
,x y z

x y z
i i i i

h




   
   

   
  

1
,x y

x y
i i i

h




  
  

  
  

where hη=α/(cosh(μ)–cosη), hφ=αsinh(μ)/(cosh(μ)–cosη) 

are metric coefficients. Calculate the partial derivatives, 

using (8). This yields 

sinh( )sin cos /(cosh( ) cos )

sin ,

xB B

B





       

 
  

sinh( )sin sin /(cosh( )

cos ) cos ,

yB B

B





     

   
  

(cosh( )cos 1) /(cosh( ) cos ).zB B       (10) 

Determine magnetic field lines from the equation 

( ) / ,x y z x x y y z zdl i dx i dy i dz i B i B i B dl B        

where 2 2 2 ,dl dx dy dz    2 2 2 .x y zB B B B    

Figure 1, e,  f shows the same as Figure 1, a, b. The re-

gion of the maximum magnetic field strength is seen to be 

shifted toward the torus center. The magnetic field strength 

in the interior is limited by 10. 
 

INTEGRAl MODEL 

Romashets and Vandas have developed a toroidal 

field model [Romashets, Vandas, 2009], using the 

Lundquist solution. They introduced a generating 

torus with the cross-section radius ρ0 and the torus 

axis radius R. The torus axis is located in the XOY 

plane of the laboratory Cartesian coordinate system, 

and the torus center coincides with the system center. 

The authors added auxiliary cylinders with the cross-

section radius ρ0 whose axes are in the XOY plane 

and are tangent to a circle of radius R, whose center 

coincides with the torus center (torus axis). The mag-

netic field inside and outside the cylinder is the 

Lundquist solution.  

The toroidal field is formed by the superposition of 

magnetic fields of the auxiliary cylinders with the angu-

lar size dφ: 

 
2

1 0
0

cos / sin ,xB A J z J d


       

 
2

1 0
0

sin / cos ,yB A J z J d


       

  
2

1
0

cos sin / ,zB A J x y R d


       (11) 

where  
22 cos sin .z x y R      

The Lundquist solution describes a force-free magnet-

ic field with a constant α; all fields of auxiliary cylinders 

are force-free fields with the same value α, hence field 

superposition (11) is also a force-free field with the same 

value α. 

The parameters are shown in Figure 1, g, h for R=6, 

α=2.41, ρ0=1. The magnetic field is seen to be located 

outside the generating torus (maximum and minimum 

radii of the torus relative to its center are 7 and 5 respec-

tively); the projections of the field lines on the cross-

section differ markedly from the circular ones. The 

magnetic field strength is limited by 5. Parameters of 

the generating torus do not uniquely determine the 

shape and volume of the region occupied by the mag-

netic field. At other distances, field components (11) are 

the magnetic fields differing from that shown in Figure 

1, g, h in volume and shape of the region. 
 

KRITTINATHAM–RUFFOLO  

MODEL 

Krittinatham and Ruffolo put forward an analytical 

model of the magnetic field in a loop representing MC 

[Krittinatham, Ruffolo, 2009]. 

We use the quasi-toroidal coordinate system as in Mil-

ler–Turner model (2). In the model calculation, we assume 

that R=0.5re, ρ0=0.1re, where re is the astronomical unit. In 

this case, the axis with φ=π, x/re=–0.5 passes through the 

Sun; and with φ=0, x/re=0.5, through Earth. The shape of 

the magnetic field lines is given by the relations 

cos( / 2),d     

0/

0sin( / 2) ,
d d

w e


      (12) 

where 0≤φ≤2π, 0≤θ≤2π, 0≤d≤ρ02π. Each field line is 

determined by d, θ0 when φ=0. From the first relation of 

(12) it follows that the cross-section area of the loop 

tends to zero at the approach to the Sun. The value w is 

the total number of complete circuits of the field line at 

the angle θ located near the axis (magnetic helicity). 

The sign of w specifies the sign of the magnetic helicity: 

when w>0, the helicity is negative and vice versa. The 

exponential factor in the second equation of (12) 

through d0 takes into account the change in the helicity 

with distance from the axis. The construction of field 

lines is the same as in the Miller–Turner model. In view 

of (12), calculate the differentials dρ=–(d/2)sin(φ/2)dφ, 

0/
( / 2) cos( / 2) ,

d d
d w e d


      , used in the recurrent 

procedure. To calculate magnetic field components, take 

into account the relationship between the shape of field 

lines and the components 

( / ) / ,B B h d d       

( / ) / ,

1.

B B h h d d

h

     

 
  

For Bφ, we utilize the equation 
2 2 3/2 2

0 0/ ( / 1) cos ( / 2) ,B B d d
      

which accounts for preservation of the magnetic flux 

through the cross-section of the loop. Considering the first 

relation from (12), we get 

0 sin ,
2 2 cos

B
B F

R


  
   

  
  

0 cos ,
2

B B F

 
  

 
  

 0/ cos( / 220 cos ,
2 2 cos

dB w
B F e

R

 



   
  

  
  

where 
3/ 2

2 2 2

0/ cos ( / 2) .F d


       
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Figure 2, a, c shows distributions of the magnetic 

field strength in the plane perpendicular to the axis. 

Field line projections are circles with the center coincid-

ing with the axis. Figure 2 b, d depicts projections of 

three field lines, located at different distances from the 

axis, on the XOY plane. In the calculation, we use 

R=0.5re, ρ0=0.1re, w=8, d0=0.07. Referring to Figure 2, 

a, b, the magnetic field strength distribution corresponds 

to the force-free one, whereas the helicity distribution 

does not. If we change the sign of the exponential factor 

in the second equation of (12), maxima of magnetic 

field strength and magnetic helicity will be on the loop 

surface (Figure 2, c, d). 

 

CONCLUSION 

The approximate Miller–Turner solution (ρ0/R<<1) 

describes the magnetic field structure in the torus. The 

structure may have four forms: negative and positive 

helicities in different directions along the torus axis. 

Properties of the magnetic field correspond to those in 

the cylindrical Lundquist model. The magnetic field 

strength is maximum on the torus axis and twice as high 

as that on the surface. The magnetic helicity is maxi-

mum on the torus surface. The modified Miller–Turner 

solution exactly satisfies the solenoidal condition. The 

magnetic field properties in the Miller–Turner solution 

differ slightly from those in the modified Miller–Turner 

solution. We have established that the approximate Mil-

ler–Turner solution corresponds quite closely to the 

exact solution for the force-free field in the torus up to 

ρ0/R≤0.5 [Vandas, Romashets, 2015]. 

A substantially asymmetric distribution of magnetic 

field properties is obtained in the toroidal Romashets 

and Vandas model. The asymmetry of the distribution 

strongly depends on R/ρ0: it increases when R/ρ0 de-

creases. In the integral model, the resulting magnetic 

field is outside the generating torus; the magnetic field 

strength distribution is highly inhomogeneous. Parame-

ters of the generating torus do not uniquely determine 

the volume and shape of the region occupied by the 

magnetic field. At other distances, field components 

(11) are the magnetic fields differing from that shown in 

Figure 1, g, h in volume and shape of the region. The 

Krittinatham—Ruffolo analytical model presents mag-

netic field components in the loop representing a mag-

netic cloud. The cross-section area of the loop tends to 

zero when the loop approaches the Sun. Magnetic field 

lines have left or right-handed helicity. The magnetic 

field strength and magnetic helicity decrease in the di-

rection from the axis of the loop to its surface. 

 

 

Figure 2. Distribution of the relative magnetic field strength (B/B0) in the plane perpendicular to the loop axis (a, c). Color indicates 

magnetic field strength according to the scale shown on the right-hand side. Black curves and numbers near them are isolines of the 

magnetic field strength. Panels b, d present projections of magnetic field lines on the XOY plane for three field lines differing in x coor-

dinate of the starting point of the field line y=0, z=0, x/re=0.595, 0.55, 0.51 
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The Miller–Turner and Romashets–Vandas toroidal 

models are better suited for description of magnetic fields 

in MCs. 

The implemented program codes for the five magnetic 

field models with explanations are available on 

[https://github.com/ivanpetukhov1978/Models-of-magnetic-

field/releases/tag/1.0], DOI: 10.5281/zenodo.1728477. 

When using the codes, reference should be made to this 

paper. 
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