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Abstract. We address the problem of early diagnos-

tics of geomagnetic storms based on the use of models 

of coordinates of movements of centers of solar coronal 

mass ejections (CME) and observations of their angular 

positions obtained from space monitoring systems. We 

propose a method for early diagnostics of geomagnetic 

storms, introduce a function to predict the distance be-

tween Earth and CME centers, and establish a decision-

making procedure. We give an example of calculating 

the distance prediction function and implement the di-

agnostic decision-making procedure based on coordi-

nate models and model observations of angular posi-

tions of CME centers. We determine the efficiency of 

the decision-making procedure for the algorithm for 

early diagnostics of geomagnetic storms. 

Keywords: coronal mass ejections, geomagnetic 

storms, space monitoring, diagnostic solutions, triangu-

lation functional. 

 

 

 

 

INTRODUCTION 

Coronal mass ejections (CMEs) have a significant im-
pact on Earth’s magnetosphere, cause magnetic storms and 
serious problems of functioning of technical and biological 
objects. Early diagnostics of geomagnetic storms is an ur-
gent research problem [Handbook of Cosmic …, 2015; 
Solar Eruptions and …, 2006]. There are two categories 
of articles on models related to the diagnostics and predic-
tion of CME arrival time. The first category includes arti-
cles describing models that use approaches based on equa-
tions of magnetohydrodynamics (MHD) of plasma for-
mations; the second contains articles describing various 
versions of nonlinear CME models.  

Odstrcil [2003] describes the ENLIL model, used by 

NASA for predictions in the heliosphere, which are 

made by solving MHD equations. The main feature of 

this model is the absence of the phenomenologically 

described mechanism for heating the solar corona. The 

accuracy of predictions of CME arrival at Earth by this 

model is about eight hours. Jin et al. [2017] describe the 

BATSRUS model, which is also based on MHD equa-

tions, but contains the mechanism for heating the solar 

corona by Alfvén turbulence. As a result, this model 

consistently describes not only the heliosphere, but also 

the solar corona. The authors also describe the EEGGL 

tool that enables us to specify initial conditions for 

CME from optical and magnetic observations. Further 

CME propagation through the corona and heliosphere 

can be calculated from equations of the model. The 

website [http://helio-weather.net/archive/2008/05 ] pre-

sents the WSA-ENLIL model, which is an advanced 

version of [Odstrcil,2003]. The approaches based on solu-

tions of MHD equations and a detailed examination of 

physics of heliospheric processes can potentially provide 

an effective solution to the problem of early diagnostics.  

Owens, Cargill [2004] have examined three phe-

nomenological models of CME propagation, capable of 

calculating the arrival time. The first model considers 

that CME moves with a constant acceleration all the 

way from the Sun to Earth’s orbit. The second assumes 

that up to a certain distance shorter than the radius of 

Earth’s orbit, CME moves with constant acceleration 

and then uniformly. The third model supposes that the 

acceleration of CME is proportional to the difference 

between CME and ambient solar wind (SW) velocities; 

the proportionality factor depends on the distance to the 

Sun according to the power law. The first model has 

two parameters (initial velocity and acceleration); the 

second, three parameters (initial velocity, acceleration, 

and distance over which the acceleration ends). The 

third model includes four parameters (initial velocity, 

drag coefficient power and multiplier, and asymptotic 

SW velocity). Gopalswamy et al. [2000], using 28 in-

terplanetary CME events, have developed an empirical 

formula of CME arrival, the work of which has been 
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studied: its predictive characteristics are shown to be 

better for fast CMEs than for slow ones. Mittal, Narain 

[2015] have used the simplest model linear dependence 

between the velocity at which CME leaves the Sun and 

the time of its propagation to Earth for calculating the 

arrival time (by the example of slow (<500 km/s) and 

fast (>500 km/s) CMEs). Michalick et al. [2004] de-

scribes an approach to estimating CME velocity, which is 

based on the solution of a special optimization problem.  

Finally, the material [Gopalswamy, 2016] is a sur-

vey of the history of CME studies, which is mainly fo-

cused on observational data and their systematization. 

Problems of diagnostics and respective models of CME 

propagation are not discussed in detail. 

The space monitoring systems in use here include 

Solar and Heliospheric Observatory (SOHO) [Brueck-

ner et al., 1995; Delaboudiniere et al., 1995] (NASA  

and ESA (European Space Agency) project); Solar TEr-

restrial RElations Observatory (STEREO) [Howard et 

al., 2008] (NASA project), and the muon hodoscope 

(MH) HURRICANE [Barbashina et al., 2008; Yashin et 

al., 2015] (MEPhI (RF) project).  

The measuring satellite system SOHO is at the La-

grange point, about 1.5 million km from Earth. It has 

the following CME monitoring instruments: Extreme 

Ultraviolet Imaging Telescope (EIT) and Large Angle 

and Spectrometric Coronagraph (LASCO). EIT takes 

pictures at wavelengths of 17.1, 19.5, 28.4 nm (Fe 

lines), and 30.4 nm (He line). It can also obtain images 

of the entire solar disk; its field of view is 1.5R


 (here 

R


 is the solar radius), pixel resolution is 1024×1024. 

LASCO consists of three coronagraphs with overlap-

ping fields of view: from 1.1 to 3, from 1.5 to 6, and 

from 3.7 to 30R


. The coronagraphs operate in the visi-

ble band with a pixel resolution of 1024×1024. 

STEREO consists of two satellites, put into near-Earth 

orbits, and moves round the Sun with periods of 346 and 

388 days. Radii of the orbits differ from the radius of 

Earth’s orbit by about ±4 %, so that the first satellite gradu-

ally moves away from Earth forward in the orbit; and the 

second, backward. Each STEREO satellite has CME ob-

servation instruments: part of the SECCHI (Sun Earth 

Connection Coronal and Heliospheric Investigation) in-

strument suite – the Extreme Ultraviolet Imager (EUVI) 

with a field of view up to 1.7R


, two coronagraphs with 

fields of view from 1.4 to 4 and from 2.5 to 15R


, and two 

wide-angle telescopes covering angles from 4° to 24° and 

from 19° to 89° from the Sun (15–84)R


 and (66–318)R


 

in Earth’s orbit plane. All the instruments have a pixel 

resolution of 2048×2048. 

In Figure 1, dashed lines show the orbits; dots mark 

the position of Earth, the Sun, SOHO (L), and STEREO 

(A, B) corresponding to October 08, 2010 [https://stereo. 

gsfc.nasa.gov/where]. 

Figure 2, a, b presents CME images captured by 

LASCO (SOHO) [https://cdaw. gsfc.nasa.gov/CME]. 

The image in Figure 2, a can be used to approximately 

estimate the CME center position relative to the Sun’s 

center: we can see that in the former case, the CME cen-

ter is at ≈3.4R


; in the latter in Figure 2, b, the CME 

center shifts over a distance of ≈4.2R


. 

Figure 3, a, b presents CME images from a STEREO 

coronagraph with a field of view of (2.5÷15)R


 

[https://stereo.gsfc.nasa.gov/cgi].

 

Figure 1. Planetary orbits, positions of Earth, the Sun, 

SOHO, and STEREO 

 

 

Figure 2. CME images from SOHO for October 08, 2010, 

at 16:12 (a), 17:48 (b) 

 

From images shown in Figure 3, a, b we can find an 

approximate position of CME centers relative to the 

Sun’s center: in the former case, the CME center is lo-

cated at ≈5.1R


 from the Sun’s center; in the latter, the 

https://stereo.gsfc.nasa.gov/cgi
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CME center shifts over a distance of ≈7.3R


. 

 

 

Figure 3. CME images from STEREO for October 08, 

2010, 16:24 (a) and 17:54 (b) 
 

SOHO and STEREO observations can be represent-

ed by sequences of discrete two-dimensional functions 

S1(i, j, T1k), S2(i, j, T2k), where to the indices (i, j)S01, 

(i, j)S02  correspond discrete measurements of azi-

muth and zenith angles; S01, S02 are domains of indices; 

T1, T2 are intervals of observation discreteness. An algo-

rithm for automatic determination of angular positions 

of CME – estimated azimuth φ°(T1, 2k) and zenith θ°(T1, 

2k) angles for these systems – can be formed in the first 

approximation by calculating the respective moment 

characteristics of S1(i, j, T1k), S2(i, j, T2k):  

01, 2 01, 2

1, 2 1, 2 1, 2 1, 2 1, 2

, ,

( ) ( ( , , )) ( , , ) ,
i j S i j S

T k iS i j T k S i j T k
 

      

01, 2 01, 2

1, 2

1, 2 1, 2 1, 2 1, 2

, ,

( )

( , , ) ( , , ).
i j S i j S

T k

jS i j T k S i j T k
 

 

    (1) 

For the plane case, a CME center positioning error 

may be ΔRSC=αRS, where RS is the solar radius, α is a 

given coefficient. An error in positioning the CME azi-

muth angle may be determined by Δφ1,2=ΔRSC/RSE, 

where RSE is the Sun–Earth distance. Let α=3.0, 

RS=0.004652RSE, then Δφ1, 2≈0.795°.  

The ground measuring system HURRICANE based 

on MH monitors observes functions of angular distribu-

tions of muon flux intensities. These observations of 

S3(i, j, T3k), i=1, …, N1, j=1, …, N2 are in information 

MH matrices with a time increment T3=1 min. The MH 

observations are realized within 0°≤φ≤360° and 

0°≤θ≤76° at azimuth and zenith angles relative to the 

Earth reference coordinate system with angular resolu-

tion in Δφ=4°, Δθ=1°; each MH matrix has a dimension 

(N1, N2), N1=90, N2=76. The angular position of a pos-

sible CME center can be estimated by identifying ab-

normal angular regions in the MH matrices, which are 

associated with a decrease in the muon flux intensity 

during development of CME formations. The estimates 

are made using formulas similar to (1). 

Figure 4 exemplifies the calculation of the modulus 

|ΔS3(i, j)| of a decrease in muon flux intensities, obtained 

from the digital processing of sequences of MH matrices. 

The observation was made on June 06, 2015 at 15:30.  

It can be seen that the abnormal region for an MH 

matrix with the maximum intensity decrease modulus 

can be defined in this case by the discrete coordinates 

51≤i≤52, 30≤j≤31, which corresponds to the azimuth 

and zenith angles 204≤φ°i≤208°, 30≤θj≤31°. An error in 

angular positioning of CME observed by HURRICANE 

can be approximately Δφ03≈(4
2
+1

2
)

1/2
=4.12°. The pri-

mary digital processing of a sequence N0=10÷15 of the 

information MH matrices enables us to reduce the angu-

lar errors to Δφ3≈Δφ30/√N0=(1.06°÷1.31°).  
It should be noted that with the assumptions 

made, the error in angular positioning of CME for-
mations from the measuring systems considered is 
Δφ1,2 ,3≈(0.5°–1.5°). Notice that today there are no 
real observations from these systems; for calculations 
we use model observations.  

This paper poses the problem of early diagnostics of 
geomagnetic storms based on the development of a 
method and algorithm for digital processing of angular 
observations from space monitoring systems, taking into 
account the model of Cartesian coordinates of CME 
movements. For this purpose, we propose a decision-
making procedure for potentially hazardous proximity 
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Figure 4. Function of the modulus of muon flux intensity 

decrease 
of CME to Earth, which is based on the introduced func-

tion of prediction for the Earth–CME center distance. We 

develop an algorithm for estimating parameters of equa-

tions of Earth – CME center movement, which relies on 

the minimization of the generalized triangulation func-

tional. We calculate the distance prediction function and 

realize the decision-making procedure for early diagnos-

tics by comparing the minimum value of the prediction 

function with the specified safe distance between Earth 

and CME center. 

To assess the effectiveness of the early diagnostics, 

we perform the statistical modeling based on models of 

CME movements and model observations. We estimate 

probabilities of errors in the decision-making procedure 

for early diagnostics of geomagnetic storms. 

In this work, we assume that digital processing of data 

from space-based and ground-based space monitoring 

systems can be used to estimate angular positions of 

CME centers. This estimate can be performed when CME 

formations are at ≈0.05–0.2 AU from the solar surface 

(near-field zone). In this case, the CME formations have 

small angular sizes for Earth’s orbit observations and can 

be taken with certain assumptions as near-point regions 

traveling in the near-field zone [Xue et al., 2005].  

Our article addressing the problem of early diagnostics 

differs in essence from [Owens, Cargill, 2004; Gopalswa-

my et al., 2000; Mittal, Narain, 2015; Michalick et al, 

2004]. It explores the possibility of applying a realistic 

model of CME movement and current angular observa-

tions of CMEs for decision making. The approach [Od-

strcil, 2003; Jin et al., 2017], associated with the use of 

three-dimensional model MHD equations, takes into ac-

count a greater number of SW and CME characteristics 

than phenomenological models, but requires enormous 

computational resources. 
 

1. METHODS FOR EARLY DIAGNOS-

TICS OF GEOMAGNETIC STORMS 

Geometry of movements of the system the Sun – CME 

center – Earth – space monitoring systems for the problem 

considered in the 2D case is shown in Figure 5.  

Center the Sun (S) in fixed rectangular Cartesian co-

ordinates XsSYs. Denote the CME center by C. Assume 

that E0 and X0E 0Y 0 are Earth and its related coordinate 

axes parallel to XsSYs; Er and XrE rYr are space moni-

toring systems with respective coordinate axes, r=1, .r  

 

Figure 5. Geometry of movements of the system the Sun – 

CME center – Earth – satellite monitoring systems 
Let xE(t), yE(t) be Cartesian coordinates of Earth, con-

sidered precisely known. Prescribe nonlinear functions of 

a general form xCM(c, t), yCM(c, t), which we take as mod-

els of Cartesian coordinates of traveling CME center, 

which depend on the vector of parameters c
T
=(c1, …, cn0). 

In particular, these functions can be polynomial – linear, 

parabolic, etc.; the choice of functions of models allows 

us to form sufficiently arbitrary paths of CME movements 

in the heliosphere. Suppose that at a certain time interval 

(t0, tf) from observations of CME angular coordinates of 

measuring systems and considering models of CME Carte-

sian coordinates we can estimate c° and hence functions of 

coordinates for the CME center xCM(c°, t), yCM(c°, t). Pre-

dict the position of the CME center, introduce a function of 

the distance between Earth and CME center  

   
2 2

E CM E M

EC

C

, )

( ) ( , ) ( ) ( ) ,

(

,

c t

x t x c t y

R

t y c t

 

     
  

0 .ft t t   (2) 

For the known numerical estimate of the vector of 

parameters c° the function REC(c°, t) is completely de-

fined. Estimate the minimum predictable distance be-

tween Earth and CME center. Take time boundaries as 

t0, tf such that the function REC (c °, t) from (2) in the 

interval (t0, tf) a fortiori reaches its minimum. Find the 

minimum of REC(c°, t) in the interval of interest, calcu-

late the corresponding time t°(c°), and REC(c°, t(c°)) – 

the minimum predictable distance: 

 
0

EC( ) arg min ,( ,)
ft t t

cc R tt
 

   

ECmin EC ( , ( )).R R c t c  (3) 

Realize the method for early diagnostics of geomag-

netic storms through the decision-making procedure to 

verify the inequality ECmin EC ,R R  where 
ECR  is the 

minimum safe distance between Earth and CME. If the 

inequality holds, we make a decision that the center of a 

probable CME is close enough to Earth and this CME is 

a potential danger in terms of the occurrence of a geo-

magnetic storm. If the inequality does not hold, we 

make the opposite decision. 

 

2. ALGORITHM FOR ESTIMATING 

PARAMETERS OF MODEL FUNCTIONS OF 
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CME CENTER MOVEMENTS 

2.1. Let us generally consider the algorithm for es-

timating parameters of model functions of CME center 

movement. Turn to Figure 5. Suppose that the observa-

tions are made at time instants tr,i and to them corre-

spond φr,i – angular observations of the CME center, 

given in the coordinate systems XrE rYr and measured 

from the ErXr axis counterclockwise, r=0, 1, …, r–1; 

i=0, 1, …, Nr–1, where Nr is the number of observations 

made by the measuring system with an index r; the axes 

of the coordinate system XrErYr move parallel to the 

axes of the coordinate system XsSY s. 

Find dependences of the Earth coordinates xE(tr, i), 

yE(tr, i) on tr,i, using the following functions of time 

φE(tr ,  i)=ωEtr ,  i+φE0, xE(tr ,  i)=REScosφE(tr ,  i),  

yE(tr ,  i)=RESsinφE(tr,  i), (4) 

where φE0, ωE0, RES – the initial angle, the angular veloci-

ty of Earth orbiting around the Sun, and the Sun– Earth 

distance – are considered as specified for (4). Calculate 

the CME center coordinates for tr,i, using models of the 

given type xCM(c, tr,i), yCM(c, tr,i) (Section 2). Write the 

expression for the generalized triangulation function-

al ( , )rS c   as the double sum whose physical meaning 

is clear: 

1

2
1

CM , E ,

,

0 CM , E ,

( , )

( , ) ( )
arctg ,

( , ) ( )

r

r

r r

r

N
r i r i

r i

i r i r i

S c

y с t y t

x c t x t







   

 
   

  





(5) 

where φ is the block vector of angular observations, αr 

are the weight factor accounting for various accuracies 

of angular observations from the measuring systems of 

interest. Estimate the vector of parameters c° by mini-

mizing the functional in width (5) from the vector of 

parameters ,c C  where C  is the restrictive set 

 arg min ( , ) .r
c C

c S c


   

Form the set C , using the system of inequalities 

cn ,  min≤cn≤cn ,  max, n =1, …, n0. Adopt the search 

method for minimizing the zero order by direct 

search to find the optimal estimates of the vector of 

parameters [Singiresu, 2009]. Organize the search – 

selection of discretized parameters cn(kn) – using the 

following relations: 

cn(kn)=cn, min+Δcn(kn–1),  

Δcn=(cn, max–cn, min)/(Kfn–1), Kfn>1,  (6) 

where Δcn is the step of search by parameters, kn=1, ..., 

Kfn, n =1, ..., n0. Due to the introduced discretization, 

represent functional (5) as dependent on k1, k2, ..., km, 

and find optimal parameters nc  through the minimizing 

search by integer variables  

 0 0
0

1 1 1
, 1, ...,

( , ..., ) arg min ( , ..., , ) ,
n

n n
k n n

k k S k k


   

01( , ..., ),n n nc c k k  n=1, …, n0. (7) 

2.2. Analyze the case of one measuring system, 

when 1,r   and find t0, i=t i, i=0, 1, …, N–1. For the 

time functions of Earth’s coordinates xE(t i), yE(t i) use 

formulas (4). Consider the simplest example of the 

model of Cartesian coordinates of the CME center in the 

form of linear functions 

xCM(c, t i)=RC0+VC0t i)cosφC0, yCM(c, t i)=  

=(RC0+VC0t i)sinφC0.   (8) 

For (8), the CME center moves uniformly and linearly 

with a velocity VC0 at an angle φC0, which is measured 

from the SXs axis counterclockwise and at the initial in-

stant of time is at a distance RC0 from the Sun. In this case, 

represent the three-dimensional vector of model parameters 

as c
T
=(c1, c2, c3), c1=VC0, c2=φC0, c3=RC0.  

For specified ti and observations of angular positions 

φi of the CME center, i=0, 1, …, N–1, write the triangu-

lation functional as a single sum  

2
1

CM E
1

0 CM E

( , ( )
( , ) arctg .

( , ( )

N
i i

i

i i i

y c t y t
S c

x c t x t





 
    

 
   

Represent the optimal parameters nc , n =1, 2, 3 for 

the model functions of CME center coordinates as in (7)  

 
1 2 3

1 2 3 1 1 2 3
, ,

( , , ) arg min ( , , , ) ,
k k k

k k k S k k k    

( ), 1, 2, 3.n nc с k n   (9) 

We examine this example due to short time spans 

required to calculate parameters of model (8). Of 

course, more realistic models of CME movement in the 

form of parabolic and other functions can also be calcu-

lated at long time spans. 

 

3. MAKING DECISIONS ON EARLY 

DIAGNOSTICS OF GEOMAGNETIC 

STORMS 

Let us make decisions on early diagnostics of geo-

magnetic storms from estimates of parameters of model 

functions of CME center move-

ments 1 C0 2 C0 3 C0, , ,c V c c R    , obtained using (9). 

For discrete instants of time tl, tl=tf0+Δt(l–1) with an in-

crement Δt=(t f–t f0)/(L f–1), calculate, using (2), a sequence 

of prediction functions for the Earth – CME center distance 

REC(c°, tl), l=1, …, Lf : 

EC

2

E C0 C0 C0

2

E C0 C0 C0

( , )

( ( ) ( ) cos )

( ( ) ( )sin ) .

l

l l

l l

R c t

x t R V t

y t R V t



    

   

 (10) 

For sequence (10) find the minimum predictable dis-

tance between Earth and CME ECminR  

 1, ...,
arg min ( , ) ,

f
EC l

l L
l R c t


   

ECmin ( , ).
l

R R c t  

The decision-making procedure consists in checking 
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the inequality
ECmin EC.R R  When this inequality holds, 

we make a decision that the CME center is close enough 

to Earth and this CME is a potential danger in terms of 

the occurrence of a geomagnetic storm. If the inequality 

does not hold, we make the opposite decision. 

If the estimated vector of parameters c° considerably 

differs from the original vector of parameters c, there 

may be type I and II errors in performing the decision-

making procedure. 

1. When the condition
ECmin EC( )R c R  holds, the 

inequality ECmin EC( )R c R  takes place which corre-

sponds to the false CME alarm, characterized by the 

conditional probability α 

 ECmin EC( )P R c R     

for 

ECmin EC( ) .R c R  (11) 

2. When the condition
ECmin EC( )R c R  holds, we 

have the inequality ECmin EC( )R c R  corresponding to 

the case of CME omission, which is characterized by 

the conditional probability  

 ECmin EC( )P R c R     

for 

ECmin EC( ) .R c R  (12) 

It is evident that the value 1–β is a probability of 

correct decision on the early diagnostics. 

 

4. EVALUATION OF THE 

EFFICIENCY OF THE DECISION-MAKING 

PROCEDURE FOR EARLY DIAGNOSTICS 

OF GEOMAGNETIC STORMS 

The efficiency of the decision-making procedure for 

early diagnostics of geomagnetic storms has been as-

sessed using a statistical modeling technique.  

We specified the sequence of the time instants ti, 

t i=0, 1, …, N–1, numerical values of the initial condi-

tion and constants φE0, ωE, RES and the initial parame-

ters of model functions of CME-center Cartesian co-

ordinates c1=VC0, c2=φC0, c3=RC0 to calculate the 

sequence of Cartesian coordinates of Earth xE(ti), 

yE(ti) from (4) and model Cartesian coordinates of 

CME xCM(c, t), yCM(c, t) from (8).  

We computed the sequence of angular positions φ0, i 

of the CME center in the coordinate system x0E0y0 for ti, 

t i=0, 1, …, N–1. 

CM E
0,

CM E

( , ) ( )
arctg .

( , ) ( )

i i
i

i i

y c t y t

x c t y t


 


  

For the statistical modeling, we formed realizations 

for sequences of model random errors δφs, i, distributed 

according to the normal law with zero mathematical 

expectation and given standard deviation (SD) σ,i=0, 1, 

…, N–1, s=1, …, M0, where M0 is the number of reali-

zations. We formed realizations of angular observations 

φs,i=φ0, i+δφs, i, i=0, 1, …, N–1, which comprised vectors 

of observations φ
T

s=(φs, 0, φs, 1, …, φs, N–1), s=1, …, M0. 

We solved M0 problems of optimization of (9) with 
observations of φs. To organize the direct search, we 
specified the number of selections Kfn, n=1, 2, 3, lower 
search limits c1, min, c2, min, c3, min, steps of search 
Δc1=ΔVC0, Δc2=ΔφC0, and Δc3=ΔRC0, calculated cn, 

max, using (6). We found the optimal parameters , ,n sc  

n=1, 2, 3, s=1, …, M0 from (9). For the statistical 
modeling, we specified the number of realizations 
M0=100. We took K fn=100, n=1, 2, 3, c1, min=250·10

3
 

m/s, c21, min=145°, c22, min=120°, c3, min=75·10
9
 m/s. For 

reliable operation of the algorithm – to achieve the 
acceptable accuracy in estimating the optimal parame-
ters – it appeared to be necessary to make the minimiz-
ing search with sufficiently small increment: we used 
steps of search ΔVC0=5000 m/s by velocity, Δφ 

C0=0.5° by angle, and ΔRC0=1.5·10
6
·10

3
 m by initial 

range. 
The time instants of observations for the calculations 

were determined by the relation t i=tH+T(i–1), tH=0H 
T=0.25·3600 s, i=0, 1, …, N–1. We specified values of 
the initial angle φE0=180° and constants 
ωE=2π/(365·24·3600)c

–1
, RES=150·10

9
 m. We prede-

termined numerical values of the initial parameters 
c1=VC0=500·10

3
 m/s, c3=RC0=0.1RES. 

The number of observations N, the angle c2=φC0, 

and the specified safe distances
ECR  varied in the 

course of the statistical modeling. 

The order of the calculation of the error probabilities 

α°β° was as follows: 

1. Calculating the predicted minimum distance 

RECmin(c) for the prescribed initial vector of parameters 

c. 

2. Calculating realizations of estimated vectors of 

parameters sc  and estimated minimum distances 

ECmin ( )sR c , s=1, .., M. 

3. Calculating estimated probabilities α° and β° by 

comparing ECmin ( )sR c  and 
ECR . In this case, we can 

face the following: 

Type I errors – a case when in fact there was a ratio 

ECmin EC( )R c R ; the number of events, when 

ECmin EC( )sR c R , was calculated, and the probabil-

ity of false alarm α° was estimated from (11), using 

sign(x)=1 for x>0 and sign (x)=0 for x≤0: 

 EC min

1

1
sign ( ) .

M

EC s

s

R R c
M 

     

Type II errors – the case when in fact there was a ra-

tio of ECmin EC( ) ;R c R  the number of events, 

when ECmin s( )R c  EC ,R  was computed and the 

omission probability β° was estimated using (12): 

 ECmin EC

1

1
sign ( ) .

M

s

s

R c R
M 

     

From 1–β° we estimated the probability of correct deci-

sion on early CME diagnostics of geomagnetic storms. 

Figures 6 and 7 present results of estimates of prob-

abilities α°, 1–β ° of false alarms and correct decisions 
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on early CME diagnostics of geomagnetic storms versus 

SD of angular observation errors σ. The number of ob-

servations N=160. 

Curves 1 and 2 correspond to two values of safe dis-

tance 9

EC1 20 10 m,R   9

EC2 60 10 m.R    To calculate α°, 

1–β° for curves 1, we took CME angles c21=145°, 

c22=170°; for curves 2, c21=156°, c22=151°. 

It can be seen that for angular errors with σ ≈ (0.5°–

1.5°) and safe distance
EC1R  the probabilities of spurious 

and correct solutions are practically acceptable values 

α°≈0.08, 1–β°≈0.85; for
EC2R  characteristics of the diag-

nostics by probabilities of spurious solutions become 

worse and take values α°≈0.15; by probabilities of correct 

solutions, remain virtually the same – 1–β°≈0.83. 

 

Figure 6. Estimated probability α° of spurious solution for 

early diagnostics of geomagnetic storms versus SD of angular 

errors σ 

 

Figure 7. Estimated probability 1–β° of spurious solution 

for early diagnostics of geomagnetic storms versus SD of an-

gular errors σ 

 

From the analysis of the results of the statistical 
modeling for the number of observations N1,2= 20, 

40, 9

EC2 60 10 mR   , and c21=156° we obtained esti-

mates of the probabilities of spurious solutions, which 

increased up to 1 20.25, 0.38     for the angular 

errors σ≈(0.5°–0.7°). For small N, acceptable character-
istics of early diagnostics can be obtained by reducing 
angular errors of observations, which can be achieved 
by improving the generalized triangulation approach. 

The results of the statistical modeling of the probabil-

ity estimates show that the proposed method and algo-

rithm for early diagnostics of geomagnetic storms proved 

to be quite efficient. 

 

CONCLUSION 

1. The developed method and algorithm for early di-

agnostics of geomagnetic storms based on the digital 

processing of angular observations from space monitor-

ing systems with the use of models of CME center 

movements have proved to be quite efficient. 

2. The approach to early diagnostics, which is based 

on the generalized triangulation, is adequate for the 

problem addressed and can be elaborated. 

3. The statistical modeling relying on the linear 

model of CME movement and model observations has 

confirmed the possibility of achieving acceptable accu-

racy in estimating parameters of model equations of 

CME movements.  

4. Estimates of the probability of errors in making 
decisions, obtained from the statistical modeling, con-
firmed that the proposed method and algorithm for early 
diagnostics of geomagnetic storms are sufficiently ef-
fective. Thus, for SD σ≈(0.5°–1.5°) and at a safe dis-

tance 9

EC1 20 10 mR    probabilities of false alarms and 

correct decisions are practically acceptable values 
α°≈0.08, 1–β°≈0.85. 

The research was conducted under Russian Science 
Foundation project No. 17-17-01215. 
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