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Аннотация 
В данной статье осуществляется поиск алгоритма рекомбинации β-ребер для алгоритма 
образования αβ-триангуляции из произвольной триангуляции на евклидовой плоскости. 
Выявлены возможные нарушения структуры 𝑇𝑇𝛼𝛼𝛼𝛼. Определена асимптотическая временная 
сложность алгоритма. 
Ключевые слова: триангуляция, αβ-триангуляция, свойства αβ-триангуляции, алгоритм 
оптимизации, рекомбинация ребер. 
 
Abstract 
This paper addresses the search for a recombination algorithm of β-edges for generating  
an αβ-triangulation from an arbitrary triangulation on the Euclidean plane. Possible violations of the 
Tαβ structure have been identified. An asymptotic time complexity of the algorithm has been 
determined. 
Keywords: triangulation, αβ-triangulation, properties of αβ-triangulation, optimization algorithm, 
edge recombination. 

 
Введение 

В статье [4] была создана математическая модель, определены основные свойства, 
определены операции разреза и сшивки αβ-триангуляции, и описан алгоритм образования  
αβ-триангуляции из произвольной триангуляции. Данная математическая модель является 
теоретической основой и новым подходом для решения задачи аппроксимации поверхностей 
свободной формы полиэдрами с группами конгруэнтных граней [2, 3, 7, 8]. Одним из шагов 
последнего алгоритма является механизм рекомбинации β-ребер посредством переброски 
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ребра, или иначе, флип ребра (flip) [1]. В данной статье авторы описывают алгоритм такого 
действия для αβ-триангуляции на евклидовой плоскости. 

 
Постановка задачи 

1. Описать алгоритм переброски β-ребер для αβ-триангуляции на евклидовой плоскости. 
 

Теория 
В целях ознакомления читателя с математической моделью, которая по сути своей 

является оптимальной триангуляцией с ограничениями по критерию минимизации суммы 
длин ребер, процитируем из [4] определение αβ-триангуляции, лемму 1 и свойство 4. 

«Определение. Возьмем сильно связную триангуляцию размерности 2 в пространстве 
𝑅𝑅2. Выделим некоторое множество граней и обозначим их замыкания α-треугольниками. 
Соответственно остальные элементы триангуляции обозначаются β-элементами. Такой 
комплекс назовем αβ-триангуляцией (𝑇𝑇𝛼𝛼𝛼𝛼), если он удовлетворяет следующим условиям: 

1. Тела α-треугольников не имеют общих точек; 
2. Триангуляция 𝐾𝐾 содержит в себе только вершины остовов α-треугольников; 
3. Сумма длин β-ребер минимальна.» 
«Лемма 1. β-ребрам всегда подчинены α-вершины.» 
«Свойство 4. β-треугольник есть комплекс, в состав которого включены не более 

одного α-ребра.» 
Из определения, леммы 1 и свойства 4 следует еще одно свойство αβ-триангуляции. 
Свойство. β-ребро всегда подчинено β-треугольнику. 
По определению α-треугольнику подчинены только α-ребра. Из леммы 1 и свойства 4 

следует, что β-отрезок опирается на вершины α-треугольника, но только β-треугольник 
способен содержать в себе β-ребра. В зависимости от того, является β-ребро граничным или 
внутренним, соответственно будет смежным с одним или с двумя β-треугольниками. 

На рис. 1 представлена αβ-триангуляция, где выполнены все этапы алгоритма 
образования αβ-триангуляции из произвольной сильно связной триангуляции, кроме 
оптимизации по условию 3 определения. 
 

 
Рис. 1. αβ-триангуляция без выполнения 3 условия определения 

 
Алгоритм рекомбинации β-ребер 

Из полученного свойства следует, что для оптимизации β-ребер по критерию 
минимизации суммы их длин достаточно для каждого внутреннего β-ребра проверить условие 
его минимальности. Каждому внутреннему ребру смежны две грани. Значит замыкания этих 
граней образуют комплекс в виде четырехугольника, в котором две диагонали являются 
конкурирующими по длине. 
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На рис. 2 взято произвольное внутреннее β-ребро из заданной триангуляции (рис. 1), 
отмеченное утолщённой красной линией. По выбранному ребру смежны грани β1 и β2, 
выделены зеленым цветом. Их замыкания, в свою очередь, образуют четырехугольник с двумя 
диагоналями. Вторая диагональ легко обнаруживается как линия, соединяющая вершины 
четырехугольника неподчиненные выбранному β-ребру, отмечена штриховой красной 
линией. Производится сравнение длин [5]. Если выбранное ребро короче, комплекс остается 
без изменений. В противном случае производится флип ребра.  

 

 
Рис. 2. Алгоритм поиска β-ребер для рекомбинации 

 
Во время выполнения этого алгоритма возникают конструкции, которые противоречат 

определению триангуляции. Один из таких случаев представлен на рис. 3. Задана 
триангуляция с двумя α-треугольниками. При проверке ребра 𝐴𝐴𝐴𝐴′ в четырехугольнике 𝐴𝐴𝐵𝐵′𝐴𝐴′𝐶𝐶′ 
диагональ 𝐵𝐵′𝐶𝐶′ оказывается короче проверяемой. При выполнении флипа ребра создается два 
новых треугольника, один из которых совпадает с α-треугольником 𝐴𝐴′𝐵𝐵′𝐶𝐶′, на другой (𝐴𝐴𝐵𝐵′𝐶𝐶′) 
накладываются оба предыдущих. Соответственно, во избежание таких случаев требуется 
проверка диагонали на совпадение с α-ребром. 

На рис. 4 приведены еще два примера, где при выполнении флипа ребра происходит 
пересечение β-ребра с α-треугольником. Основываясь на аксиомах принадлежности 
евклидовой геометрии и непрерывности плоскости легко доказать, что прямая, проходящая 
через вершину треугольника, пересекает сам треугольник, если она пересекает 
противолежащую вершине сторону треугольника. Так как у нас β-ребро есть отрезок, 
соединяющий два α-треугольника, то требуется производить проверку его пересечения  
с противолежащими α-ребрами дважды, т.е. для каждого α-треугольника. 

С возможными нарушениями структуры 𝑇𝑇𝛼𝛼𝛼𝛼 мы разобрались. Теперь следует понять, как 
осуществить перебор всех внутренних β-ребер? Создадим очередь из них. Будем осуществлять 
проверку каждого. На рис. 5 (правая часть триангуляции из рис. 1) рассмотрим случай 
осуществления флипа ребра. Есть ребро 𝐵𝐵𝐵𝐵, которое прошло проверку и в четырехугольнике 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 является наименьшей диагональю. Есть ребро 𝐶𝐶𝐶𝐶, над котором осуществляется 
проверка. В четырехугольнике 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 диагональ 𝐵𝐵𝐵𝐵 оказывается наикратчайшей, 
осуществляется флип ребра. Если после перестроения снова проверить ребро 𝐵𝐵𝐵𝐵, то  
в четырехугольнике 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 оно окажется длиннее диагонали 𝐴𝐴𝐴𝐴. Получается, если созданная 
очередь β-ребер будет статична, то мы упускаем некоторое множество β-ребер, требующих 
перестроения. Эта задача решается, если β-ребра – стороны четырехугольника, в котором 
произошел флип ребра добавлять в очередь для повторной проверки. 
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Рис. 3. Пример нарушения, β-ребро совпадает с α-ребром 

 

 
Рис. 4. Примеры нарушения, β-ребро пересекает α-ребро 
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Рис. 5. Алгоритм перебора β-ребер в случае флипа ребра 

 
Результат 

Опишем полный алгоритм рекомбинации β-ребер αβ-триангуляции, который является 
частью алгоритма образования αβ-триангуляции из заданной произвольной триангуляции. 

1. Создание очереди (списка) внутренних β-ребер. 
2. Проверка β-ребра на минимальность длины в соответствующем четырехугольнике. 
2.1. Если проверяемое ребро минимально среди диагоналей: 
2.1.1. Если ребро не пересекает α-треугольник: 
2.1.1.1. Произвести флип ребра; 
2.1.1.2. Вставить в очередь β-стороны вновь образовавшегося четырехугольника. 
2.2. Иначе: 
2.2.1. Вернуться к пункту 2. 
3. Сохранить и завершить программу. 
 

Выводы 
В статье описан алгоритм рекомбинации β-ребер для алгоритма образования  

αβ-триангуляции из заданной произвольной триангуляции на евклидовой плоскости. Найдены 
возможные коллизии β-ребер с α-треугольниками и определены действия для их решения. 
Временная сложность полученного алгоритма составляет 𝑂𝑂(𝑛𝑛), где 𝑛𝑛 – число β-ребер 
триангуляции [6]. 
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