Библиографический список

- 1. Алметов, Н. С. Влияние доз азотных удобрений на урожайность и качество зерна яровой пшеницы / Н. С. Алметов, А. С. Козырев // Актуальные вопросы совершенствования технологии производства и переработки продукции сельского хозяйства Мосоловские чтения: мат. региональной науч.-практ. конф. Йошкар-Ола, 2009. С. 7-8.
- 2. Бакаева, Н. П. Влияние применения удобрений при выращивании пшеницы на получение белка и крахмала / Н. П. Бакаева, О. Л. Салтыкова, Н. Ю. Коржавина // Химия в сельском хозяйстве : мат. Всероссийской науч.-практ. конф. Уфа, 2014. С. 203-207.
- 3. Бакаева, Н. П. Распределение биохимических показателей и засоренности по элементам агроландшафта в лесостепи Заволжья / Н. П. Бакаева, С. В. Александрова // Известия Самарской ГСХА. 2011. № 4. С. 51-54.
- 4. Гусейнов, С. И. Белки зерна различных сортов пшеницы и их значение в селекции на качество // Актуальные проблемы гуманитарных и естественных наук. 2015. № 11-2. С. 57-61.
- 5. Денежкин, Д. Ю. Фракционный состав белков озимой и яровой пшеницы / Д. Ю. Денежкин, Е. Г. Прудникова // Инновационная деятельность в модернизации АПК : мат. Международной науч.-практ. конф. Курск, 2017. С. 26-29.
- 6. Салтыкова, О. Л. Влияние плодородия почвы на урожайность, накопление белка и крахмала в зерне яровой и озимой пшеницы / О. Л. Салтыкова, Н. П. Бакаева // Вклад молодых ученых в аграрную науку : мат. Международной науч.-практ. конф. Кинель, 2016. С. 81-83.
- 7. Салтыкова, О. Л. Урожайность и биохимические показатели качества зерна яровой пшеницы в зависимости от системы обработки почвы в лесостепи Заволжья // Научные исследования и разработки к внедрению в АПК: мат. Международной науч.-практ. конф. Иркутск, 2013. С. 125-129.

DOI 10.12737/17444 УДК 631.95:633.11

АККУМУЛЯЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ ПРОРОСТКАМИ ЯРОВОЙ ПШЕНИЦЫ

Троц Наталья Михайловна, канд. биол. наук, доцент кафедры «Садоводство, ботаника и физиология растений», ФГБОУ ВО Самарская ГСХА.

446442, Самарская область, п.г.т. Усть-Кинельский, ул. Учебная, 2.

E-mail: troz shi@mail.ru

Горшкова Оксана Васильевна, аспирант кафедры «Садоводство, ботаника и физиология растений», ФГБОУ ВО Самарская ГСХА.

. 446442, Самарская область, п.г.т. Усть-Кинельский, ул. Учебная, 2.

E-mail: troz_shi@mail.ru

Ключевые слова: почва, пшеница, свинец, медь, металлы, яровая.

Цель исследования — разработка агротехнологических приемов установления и контроля содержания тяжелых металлов в растениеводческой продукции. Для проведения лабораторных опытов использовался чернозем типичный. Приведены результаты содержания свинца и меди в почве и растениях яровой пшеницы сорта Кинельская 59 при разных уровнях загрязнения в условиях вегетационного опыта. Установлено, что с возрастанием вносимых доз солей тяжелых металлов увеличивается их содержание в почве и проростках яровой пшеницы. Процент подвижности в почве меди и свинца растет с увеличением уровня загрязнения в 2,9 раза и в 9,2 раза, соответственно. С увеличением доз меди и свинца возрастает концентрация доступных для растений форм азота и фосфора. Для всех вариантов опыта характерно акропетальное распределение тяжелых металлов в растениях — медь: корни (46,59) > побеги (14,66); свинец: корни (47,0) > побеги (12,78). Величина Іа уменьшается с увеличением дозы вносимых солей, что свидетельствует о наличии у культуры яровой пшеницы сорта Кинельская 59 барьерных функций. Высокая корреляционная зависмость отмечается между содержанием меди в корнях растений и значениями валовой (r = 0,98) и подвижной формы (r = 0,94) в почве. Количество меди в побегах растений слабее связано с содержанием элемента в почве (r = 0,66). Между содержанием валовой и подвижной формы свинца в почве выявлена высокая корреляционная зависимость (r = 1,00), такая же величина связи элемента отмечается с корнями растений и побегами.

Тяжелые металлы (ТМ) считаются одними из опасных токсикантов, поскольку для них не существует механизмов природного самоочищения. Загрязнение объектов биосферы ТМ является причиной накопления их в пищевом сырье в количествах, порой превышающих санитарно-гигиенические нормы [2, 6, 9].

Почвы являются одним из первых звеньев в биогеохимической пищевой цепи и начальным этапом миграции ТМ в системе почва – растение – животное – продукт питания – человек [3, 4]. Растения могут

содержать опасные для животных и человека концентрации тяжелых металлов. Опасность, вызываемая загрязнением почв тяжелыми металлами, заключается еще и в слабом выведении их из почв (период полуудаления из почвы меди составляет приблизительно 1500 лет, свинца — несколько тысяч лет) [1, 7]. Свинец — политропный яд, относящийся к 1 классу опасности согласно документам Международного агентства канцерогенного регистра [1]. Поскольку свинец имеет техногенное происхождение, его количество может быть показателем общего уровня токсичности продукции. Расчетами доказано, что безопасное зерно пшеницы можно выращивать на почвах, содержащих не более 16 мг/кг свинца, соломы озимой пшеницы — 75 мг/кг [5].

Медь в определенных концентрациях является эссенциальным элементом. Исследованиями отмечено техногенное привнесение меди в почвы Самарской области [8].

Разрозненные сведения и публикации касаются отдельных аспектов контроля содержания некоторых ТМ в почве и продукции растениеводства. Возникает необходимость изучения поведения ТМ в системе «почва-растение» для нормализации неблагоприятных токсико-экологических ситуаций.

Информация по этим вопросам поможет прогнозировать накопление токсикантов в продуктах растительного происхождения, нормировать их поступление в трофические цепи и разработать мероприятия по ограничению этого поступления с целью производства экологически безопасного продовольствия и фитодезактивации экосистем от ТМ.

Цель исследования — разработка агротехнологических приемов установления и контроля содержания тяжелых металлов в растениеводческой продукции.

Задача исследований — изучить особенности аккумуляции меди (II) и свинца (II) растениями яровой пшеницы Кинельская 59 в зависимости от уровня загрязнения в условиях модельного эксперимента.

Материалы и методы исследований. Для проведения лабораторных опытов использовался чернозем типичный. Почва предварительно просеивалась для получения необходимой структуры. В качестве тест-объекта использован районированный сорт яровой пшеницы Кинельская 59. Постановка вегетационных опытов проведена по методике 3. И. Журбицкого (1968). В сосудах с почвой массой 5 кг выращивали растения в течение 30 суток. Имитация загрязнения почв тяжелыми металлами создавалась внесением легкорастворимых форм солей — ацетатов свинца ($\omega(Pb)$ = 63,7%) и меди ($\omega(Cu)$ = 35,2%). Контролем служили растения, выращенные на почвах без внесения солей металлов. Одновременно вносили питательные вещества $N_{0,75}P_{0,5}K_{0,5}$ (г/сосуд) в виде солей $N_{4}NO_{3}$, $N_{4}PO_{4}$, KCI.

Схема опыта:

OXCINA OTIBITA.	
1) ФОН;	1) ФОН;
2) $\Phi OH + N_{0.75}P_{0.5}K_{0.5}$;	2) $\Phi OH + N_{0,75}P_{0,5}K_{0,5}$;
3) 1 ПДК Cu + N _{0,75} P _{0,5} K _{0,5} ;	3) 1 ПДК Pb + N _{0,75} P _{0,5} K;
4) 2 ПДК Cu + N _{0,75} P _{0,5} K _{0,5} ;	4) 2 ПДК Pb + $N_{0,75}P_{0,5}K_{0,5}$;
5) 4 ПДК Cu + N _{0.75} P _{0,5} K _{0,5} ;	5) 4 ПДК Pb + N _{0,75} P _{0,5} K _{0,5} ;
6) 9 ПДК Cu + No 75Po 5Ko 5.	6) 8 ПДК Pb + No 75Po 75Ko 5.

В отобранных образцах определяли: содержание гумуса по Тюрину; рН солевой вытяжки; содержание легкогидролизуемого азота в кислотной (0,5 н. H₂SO₄) вытяжке по Тюрину и Кононовой в модификации Кудеярова. Содержание подвижного фосфора и обменного калия получено разными методами, для сопоставимости полученные результаты лабораторных анализов по Мачигину пересчитаны по методу Чирикова. Содержание тяжелых металлов определено методом атомно-абсорбционной спектроскопии на приборе «Спектр 4-5» с предварительной подготовкой проб методом «сухой» минерализации.

Результаты исследований. Результаты проведенных исследований почвы показали повышенное содержание гумуса, нейтральную и слабокислую реакция среды почвенного раствора, среднее содержание подвижного фосфора, высокое содержание обменного калия и гидролизуемого азота. Значения агрохимических показателей свидетельствуют о благоприятном питательном режиме для роста и развития растений.

Доза вносимого действующего вещества меди связана с агрохимическими показателями почвы (табл. 1). Расчет корреляционной зависимости (r) показал, что концентрация меди в корнях растений находится в слабой зависимости от содержания подвижного фосфора (r = 0,70), подвижного калия (r = 0,34) кислотности среды (r = 0,31), легкогидродизуемого азота (r = 0,14) и в обратной зависимости от концентрации гумуса в почве (r = -0,06). Известно, что с увеличением дозы меди возрастает концентрация доступных для растений форм азота и фосфора [5].

Содержание валовой и подвижной формы меди в почве на контрольном варианте не превышает ПДК. Внесение расчетной дозы удобрений способствует незначительному повышению концентрации меди в почве. Однако для питания растений особое значение имеет не валовое содержание меди, а количество ее подвижных форм в почве.

Исследования Антипова-Каратаева (1953) показали, что количество растворимых, доступных растениям, форм меди в природных условиях не превышает 10% от общего его содержания.

Содержание меди в почве и органах яровой пшеницы сорта Кинельская 59

в зависимости от концентрации действующего вещества, мітли												
Почва							Органы растения, мг/кг					
Действующее						Си, мг/кг		%	корни	la	побег	la
вещество, мг/кг Гумус, %	pH P_2O_3	P ₂ O ₅	K ₂ O	NO_3^-	Подвижная форма	Валовая форма						
0	8,0	7,0	112	218	79	0,25	15,09	1,66	30,10	120,40	11,71	46,84
$0 + N_{0,75}P_{0,5}K_{0,5}$	8,0	7,0	104	205	93	0,29	16,96	1,71	18,70	64,48	10,41	35,90
20 + N _{0,75} P _{0,5} K _{0,5}	7,9	6,9	124	236	88	0,44	21,06	2,09	33,77	76,75	12,72	28,91
60 + N _{0,75} P _{0,5} K _{0,5}	8,1	6,9	123	240	89	0,85	34,92	2,44	33,67	39,61	11,02	12,97
250 + N _{0,75} P _{0,5} K _{0,5}	8,4	7,0	132	232	94	4,90	104,00	4,71	57,08	11,65	21,37	4,36
750 + N _{0,75} P _{0,5} K _{0,5}	7,9	7,0	131	229	89	49,32	324,75	15,19	106,19	2,15	20,73	0,42
מו אוניו			•			2	55		20			

С возрастанием дозы действующего вещества (д.в.) увеличиваются значения валовой, подвижной формы меди и растет подвижность элемента (рис. 1).

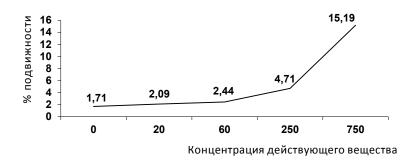


Рис. 1. Зависимость подвижности меди от концентрации действующего вещества, %

За пределы допустимой концентрации и валовая и подвижная форма выходят при внесении дозы действующего вещества $250 \, \mathrm{mr/kr}$. В корнях проростков пшеницы содержание меди на уровне ПДК отмечается на контрольном варианте, при внесении расчетной дозы удобрений значение элемента снижается в 1,6 раза. При дозе $20 \, \mathrm{mr/kr}$ действующего вещества в почве концентрация в корнях растений увеличивается, при дозах $250 \, \mathrm{u}$ 750 мг/кг составляет 1,9 и 3,5 ПДК соответственно. Коэффициент перехода (Кп) в побеги растений составил в зависимости от вариантов и дозы действующего вещества: контроль -1,5; $0 \, \mathrm{mr/kr} - 1,9$; $20 \, \mathrm{mr/kr} - 0,9$; $60 \, \mathrm{mr/kr} - 0,4$; $250 \, \mathrm{mr/kr} - 0,9$; $750 \, \mathrm{mr/kr} - 0,004$. Приведенные значения Кп свидетельствуют о существующих механизмах защиты в растениях, способствующих защите вегетативных и генеративных органов. Высокая корреляционная зависмость отмечается между содержанием меди в корнях растений и значениями валовой (r = 0,98) и подвижной формы (r = 0,94) в почве.Значения меди в побегах растений слабее связаны с содержанием элемента в почве (r = 0,66). Содержание свинца в почве контрольного варианта не превышало ПДК валовой формы, но в 1,1 раза находилось выше подвижной формы элемента (табл. 2). Корреляционная зависимость подвижной формы свинца с агрохимическими показателями почвы была значимой для гумуса (r = 0,80), подвижного фосфора (r = 0,75), подвижного калия (r = 0,25), легкогидролизуемого азота (r = 0,59), с кислотностью среды – обратная зависимость (r = -0,58).

Таблица 2 Содержание свинца в почве и органах яровой пшеницы сорта Кинельская 59 в зависимости от концентрации действующего вещества, мг/кг

B cashormoon or hongon pagin Asions Jiomana Bamasa , mina												
	Почва								Органы растения, мг/кг			
Действующее						Pb, мг/кг		%				
вещество, мг/кг	Гумус, %	рН	$P_{2}O_{5}$	K_2O	NO_3^-	Подвижная	Валовая	70	корни	la	побег	la
						форма	форма					
0	8,0	7,0	112	218	79	7,07	63,37	11,16	25,04	3,54	8,07	1,14
0 + N _{0,75} P _{0,5} K _{0,5}	8,0	7,0	104	205	93	4,84	63,36	13,09	7,74	1,60	4,58	0,95
50 + N _{0,75} P _{0,5} K _{0,5}	8,0	6,8	104	223	90	14,65	74,80	19,56	12,91	0,88	5,78	0,40
200 + N _{0,75} P _{0,5} K _{0,5}	8,0	6,9	126	184	89	73,15	255,85	28,56	25,38	0,35	8,24	0,11
500 + N _{0,75} P _{0,5} K _{0,5}	7,9	6,9	112	221	102	117,85	544,50	21,64	51,03	0,43	15,39	0,13
2000 +N _{0,75} P _{0,5} K _{0,5}	8,2	6,8	130	221	100	488,30	1531,7	31,88	159,74	0,33	34,62	0,07
ПДК [6]	-				6	130	-	30				

Внесение расчетной дозы удобрения способствовало снижению значений подвижной формы свинца в 1,23 раза ниже ПДК, что связано с переводом элемента в неподвижные соединения. При внесении дозы действующего вещества превышение подвижного свинца в почве составило: 50 мг/кг – 2,4 ПДК, 200 мг/кг – 12,2 ПДК, 500 мг/кг – 19,6 ПДК, 2000 мг/кг – 81,3 ПДК. Концентрация валовой формы за пределы допустимой концентрации выходит, начиная с дозы д. в. 200 мг/кг и составляет 2 ПДК.

Между содержанием валовой и подвижной формы свинца в почве выявлена высокая корреляционная зависимость (r = 1,00), такая же величина связи отмечается с корнями растений и побегами.

В почве с увеличением вносимых доз д.в. подвижность свинца увеличивается (рис. 2). При дозе д.в. 500 мг/кг происходит снижение процента подвижности, что может быть связано со стрессовой ситуацией для растений, с этой дозы отмечено превышение ПДК в корнях растений.

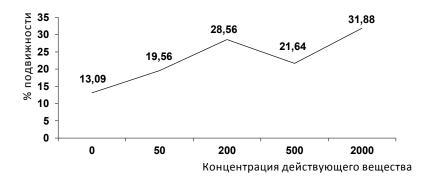


Рис. 2. Зависимость подвижности свинца от концентрации действующего вещества, %

Количество свинца в корнях растений при дозе д.в. 500 мг/кг составило 1,7 ПДК, при дозе 2000 мг/кг – 5,3 ПДК. Поступление токсиканта в вегетативные органы ограничивается при внесении дозы д.в. 2000 мг/кг, составило 1,1 ПДК. Величина коэффициентов перехода равнялась на контроле -0,32; 0 мг/кг - 0,59; 50 мг/кг - 0,45; 200 мг/кг - 0,32; 500 мг/кг - 0,30; 2000 мг/кг - 0,22. Таким образом, корни аккумулируют меди и свинца больше, чем побеги в 3,2 и 3,7 раз, соответственно. Неравномерное накопление TM различными частями растения может быть объяснено тем, что в процессе метаболизма в растениях образуются различные органические соединения с хелатирующими свойствами и при проникновении ионов TM в корни происходит их связывание и, как следствие, снижение подвижности. Благодаря этим «защитным барьерам» TM аккумулируются главным образом в корнях растений, а не в наземных органах [7].

В проведенных исследованиях прослеживается положительная зависимость между концентрацией ТМ в почвенном растворе и поглощением их растением, однако количественное выражение аккумуляции (Ia) обратно пропорционально увеличению содержания токсиканта в почве. Индекс аккумуляции Cu (II) и Рb (II) в корнях и побегах уменьшается с увеличением концентрации действующего вещества.

Заключение. С возрастанием вносимых доз действующего вещества солей меди и свинца увеличивается их содержание в почве и проростках яровой пшеницы. Процент подвижности в почве растет с увеличением уровня загрязнения: меди в 2,9 раза, свинца в 9,2 раза. С увеличением доз действующего вещества меди и свинца возрастает концентрация доступных для растений форм азота и фосфора. Высокая корреляционная зависмость отмечается между содержанием меди в корнях растений и значениями валовой (r = 0.98) и подвижной (r = 0.94) формы в почве, содержанием валовой и подвижной формы свинца (r = 1.00). Для всех вариантов опыта характерно акропетальное распределение тяжелых металлов в растениях – меди: корни (46.59) > побеги (14.66); свинца: корни (47.0) > побеги (12.78). Величина I_a уменьшается с увеличением дозы вносимых солей меди и свинца.

Библиографический список

- 1. Андрусишина, И. Н. Опасен ли свинец в воде? / И. Н. Андрусишина, И. А. Голуб, З. В. Малецкий // Вода и водоочистные технологии. 2016. № 2(19). С. 40-50.
- 2. Гайдукова, Н. Г. О возможности чернозема выщелоченного Кубани инактивировать тяжелые металлы / Н. Г. Гайдукова, Н. А. Кошеленко, И. И. Сидорова, И. В. Шабанова // Научный журнал КубГАУ. 2010. №61 (07). С. 1-14.
- 3. Ишкова, С. В. Особенности аккумуляции тяжелых металлов на черноземе южном / С. В. Ишкова, Д. А. Ахматов, Н. М. Троц // Аграрная Россия. 2012. № 6. С. 31-35.
- 4. Казнина, Н. М. Влияние кадмия на физиологические процессы и продуктивность растений семейства Роасеае / Н. М. Казнина, А. Ф. Титов // Успехи современной биологии. 2013. Т. 133, № 6. С. 588-603.

- 5. Лукин, С. В. Агроэкологическое состояние пахотных почв степной зоны Белгородской области / С. В. Лукин, О. С. Верютина, Н. И. Корнейко // Достижения науки и техники АПК. 2008. № 6. С. 34-35.
- 6. Теплая, Г. А. Тяжелые металлы как фактор загрязнения окружающей среды // Астраханский вестник экологического образования. 2013. № 1(23). С. 182-192.
- 7. Титов, А. Ф. Устойчивость растений к тяжелым металлам : монография / А. Ф. Третьяков, В. В. Таланова, Н. М. Казнина, Г. Ф. Лайдинен. Петрозаводск, 2007. 172 с.
- 8. Троц, Н. М. Влияние природных адсорбентов на накопление тяжелых металлов земляникой садовой / Н. М. Троц, А. В. Батманов // Аграрная Россия. 2017. № 3. С. 10-16.
- 9. Троц, Н. М. Особенности накопления тяжелых металлов перспективными сортами картофеля, возделываемыми в южной зоне Самарской области / Н. М. Троц, А. И. Черняков // Известия Самарской ГСХА. 2013. № 4. С. 17-21.