

Влияние стратегий акционерного финансирования на корпоративный рост в инновационных технологических компаниях

Influence of Equity Financing Strategies on Corporate Growth in Technological Innovation Enterprises

DOI: 10.12737/2587-6279-2025-14-3-17-23

Получено: 13.01.2025 / Одобрено: 26.01.2025 / Опубликовано: 25.09.2025

Цю Сяньяо

Доктор делового администрирования DBA, Председатель правления Guangzhou Haige Shipping Co., Ltd., Китай, выпускница «Программы профессионального развития для постдокторов: управленческие науки», проводимой в ФГБОУ ВО «Московском государственном университете имени М. В. Ломоносова», г. Москва

Львова О.А.

Д-р экон. наук, доцент, профессор кафедры финансового менеджмента факультета государственного управления, Академический директор «Программы профессионального развития для постдокторов: управленческие науки», ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова», г. Москва

Qiu Xiangyao

Doctor of Business Administration (DBA), Chairman of the Board in Guangzhou Haige Shipping Co., Ltd., China, Graduate of “Postdoctoral Professional Development Program: Management Sciences” in the Lomonosov Moscow State University, Moscow

Lvova O.A.

Doctor of Economic Sciences, Associate Professor, Professor of Financial Management Department in School of Public Administration, Academic Director of “Postdoctoral Professional Development Program: Management Sciences”, Lomonosov Moscow State University, Moscow

Аннотация

Исследование 218 компаний, работавших в шести технологических отраслях в период с 2018 по 2023 г., а также изучение 17 подробных тематических кейсов, позволило авторам выявить механизмы, с помощью которых альтернативные структуры акционерного капитала влияют на различные траектории корпоративного роста. Результаты исследования показывают, что программы поэтапного финансирования, основанные на последовательно принимаемых решениях, способствуют ускорению роста доходов и увеличению числа сотрудников по сравнению с одноэтапными стратегиями. Компании, привлекающие стратегических прямых инвесторов из своей отрасли, добиваются значительного повышения производительности НИОКР по сравнению с компаниями, финансируемыми в основном тактическими портфельными инвесторами. Кластерный анализ позволил выявить четыре модели корпоративного развития — «Быстрое масштабирование и рост», «Фокусирование на инновациях», «Сбалансированное развитие» и «Консервативный рост», каждая из которых отражает уникальные характеристики результативности и динамику размывания акционерного капитала. Помимо обеспечения капиталом, важными факторами, влияющими на эффективность инноваций, скорость расширения рынка и устойчивость конкурентных преимуществ, являются наличие у инвесторов соответствующего отраслевого опыта, архитектура управления и темпы привлечения капитала. Полученные результаты исследования уточняют теорию корпоративных финанс, специфицируя условия и механизмы посредничества, а также предоставляя предпринимателям эмпирически обоснованные рекомендации по адаптации тактики финансирования к их технологической нише, этапу жизненного цикла и стратегическим направлениям развития

Ключевые слова: акционерное финансирование, корпоративный рост, технологические инновации, венчурный капитал, стратегические инвестиции, стратегия финансирования, инновационный потенциал, показатели роста.

Abstract

Through a study of 218 companies, operating in six technology sub-sectors from 2018 to 2023, and through seventeen in-depth case studies, we have disentangled the mechanisms through which alternative equity structures influence diverse growth paths. The findings demonstrate that milestone-based, sequential financing programs accelerate revenue expansion and employee growth compared to single-stage strategies. Companies that attract domain-specialized strategic investors achieve a significant increase in R&D productivity relative to those funded primarily by financial investors. Cluster analysis reveals four distinct archetypal patterns: Rapid Scalers, Innovation Focusers, Balanced Developers, and Conservative Growers. Each pattern is associated with a unique set of performance characteristics and dilution dynamics. In addition to capital provision, alignment of investor expertise, governance architecture, and capital deployment tempo emerge as significant factors, which influence innovation output, market expansion speed, and the sustainability of competitive advantage. These findings refine corporate finance theory by specifying conditions and mediation mechanisms, providing entrepreneurs with empirically grounded guidance for tailoring financing tactics to their specific technological domain, lifecycle stage, and strategic objectives.

Keywords: equity financing, corporate growth, technological innovation, venture capital, strategic investment, financing strategy, innovation capacity, growth metrics.

seen unremarkable in traditional manufacturing can have outsized, asymmetrical effects on the success of a software platform, a genomic therapy, or a hydrogen-storage start-up. Scholarship has explored discrete in-

Introduction

Technological innovation enterprises sit at the heart of rapid knowledge creation, uncertain market adoption, and volatile competition. Capital structures that may

struments such as venture capital, corporate venture capital, angel syndication and public-market listing, but often in isolation. This approach overlooks how hybrid or sequential combinations of these instruments shape multidimensional growth [1].

Simultaneously, the concept of “corporate growth” has expanded from simple revenue growth toward to more complex indicators: innovation output, intangible-asset accumulation, organizational learning capacity, and ecosystem positioning [2]. While resource-based views emphasize the endowment of factors, dynamic capability perspectives underscore the redeployment, recombination, and rapid reconfiguration of these resources once acquired [3]. Capital-intensive technology ventures live and die by the calibre of the equity they attract. However, orthodox finance theory still treats equity as a fungible commodity rather than a strategic design parameter. Recent meta-analyses reveal that the same amount of capital can either accelerate or hinder growth depending on the contractual terms, governance covenants and investor knowledge compatibility [4]. A founder who accepts a single, undifferentiated round of funding at a high valuation may experience headline dilution, only to find that the board lacks the expertise to guide clinical trials or the ability to unlock late-stage markets [8]. Conversely, an entrepreneur who structures smaller tranches linked to verifiable milestones may choose to trade near-term ownership for a more gradual risk reduction path that maximizes option value at the exit [3]. These different outcomes indicate the way *how* equity is structured matters as much as the amount (*how much*) of equity that is raised.

Scholars have long used the resource-based view to explain performance differences, arguing that firms gain an advantage by controlling valuable, rare, imitable and non-replaceable assets. However, financial capital rarely meets all four criteria; almost any company can, in theory, access money. What sets superior financing strategies apart is their ability to import *embedded knowledge* — technical, regulatory or relational — that can not be replicated through cash alone [5]. Strategic corporate investors embody this logic. When a diagnostic start-up hires well — established medical — device manufacturer as a shareholder, they receive, in addition to capital, tacit manufacturing expertise and a pre-approved distribution network that would otherwise take years to build [9]. In biotechnology, where knowledge opacity and regulatory hurdles are common, such knowledge infusions bypass the notorious “valley of death” between discovery and first-in-human trials [10]. Our data con-

firms a 3.4-fold increase in R&D productivity when working with predominantly strategic partners. This evidence suggests that knowledge-rich capital acts more like an enabler than a simple financial input, supporting the idea that it behaves more like a resource.

Macroeconomic liquidity cycles add additional complexity. During the periods of high market optimism, such as 2000, 2015, and 2021, venture capital inflows exceed historical trends, driving up valuations and shortening the due diligence process [12]. In practice, we see that startups that accept generous term sheets during these periods often experience a *post-euphoria hangover*, including subsequent down rounds, investor-founder disagreements, and governance stalemates triggered by overly protective anti-dilution provisions. Conversely, startups financed during periods of capital scarcity have more granular milestones and tighter board oversight, which paradoxically correlate with higher survival rates seven years later [11]. These patterns reinforce the argument for viewing financing strategies as a dynamic ability — an organizational skill in timing, structuring, and sequencing capital in conjunction with external cycles [2].

Jurisdictional differences compound these temporal effects. In the United States, dual-class share structures and evergreen funds provide founders with an extended strategic horizon, while European prudential regulations constrain protective measures, pushing ventures towards earlier strategic partnerships. East Asian ecosystems, characterized by conglomerate-led keiretsu and chaebol structures, embed corporate venturing within broader alliance networks that combine equity with supply chain integration. Our panel explores how ventures navigate these regulatory differences: Singaporean robotics companies seek Japanese manufacturing investors for credibility in international standards-based tenders, and Nordic clean technology startups leverage transatlantic special purpose acquisition companies (SPACs) to circumvent domestic IPO requirements. Strategic arbitrage emphasizes the importance of *geofinancial literacy* — the ability to move capital across borders, taking advantage of differences in listing rules, tax incentives, and disclosure standards.

A second theoretical gap concerns *capital-deployment velocity*. Traditional pecking-order theory implies that cash is king, but empirical evidence from software as a service (SaaS) cohorts shows that companies hoarding large amount of cash without corresponding absorption capacity underperform their peers who deploy money in lockstep with validated learning cycles [13]. Excess

capital can inflate acquisition costs, erode pricing discipline and encourage premature scaling, symptoms of what Nanda and Rhodes-Kropf term “hot-market myopia” [12]. Our findings corroborate and nuance this argument: while rapid spending correlates positively with market-share capture in winner-take-all markets (e.g., social gaming), the same haste is outright deleterious in science-based hardware domains where regulatory sequencing dictates pace. The implication is that optimal deployment velocity is *contingent* on technology complexity and clock-speed of competitive rivalry.

Third, equity strategy intersects with human capital in subtle and recursive ways. The board composition not only disciplines management behavior, but also influences the attractiveness of the venture to *next-round* investors and key hires [15, 16]. Data scientists and senior engineers increasingly evaluate cap-table hygiene when choosing employers, as opaque preference stacks or ratchet-laden terms erode perceived upside and moral tone. Thus, the financing design reverberates through the talent market, shaping the very absorptive capacity it seeks to augment [17]. Paradoxically, founders focused on minimizing dilution often undermine their ability to recruit the specialised labour needed to efficiently exploit new capital.

Three aspects merit attention:

1. The qualitative aspects of financing, such as timing, governance rights and investor complementarity, remain under-specified in relation to headline ticket size or valuation [4].
2. Little theory integrates how optimal financing structures change across different phases of a company's life cycle, from gestation to break-even to pre-exit, nor how technology-specific factors moderate this evolution. [5].
3. The relationship between equity investment and innovative output has been paradoxically documented to be both catalytic and constraining, depending on the research design. This suggests that there are missing mediator variables such as strategic alignment or knowledge transfer [6–8]. Additionally, the rise of corporate and ecosystem-based investors has blurred the distinction between strategic and financial motives, and globalization has introduced jurisdiction-specific patterns of investor protection, board entrenchment, and listing thresholds [9–12].

Against this backdrop, our research develops an integrated framework that links investor attributes, contractual provisions, and capital-deployment rhythms to different aspects of growth. The framework is tested

through mixed-methods analysis, providing guidance for founders and policy makers seeking to match financing plans with innovation intensity, market volatility, and competitive pressure.

Materials

A convergent mixed-methods design combined a longitudinal financial panel with qualitative process tracing. The quantitative backbone comprises 218 firms distributed across enterprise software (47), biotechnology (35), advanced manufacturing (42), financial technology (33), healthcare technology (36), and clean energy (25). Eligibility required at least one external equity round, three years of operational history, and observable innovation proxies (patents, R&D-to-sales ratio, or new-product cadence) [13]. Financing data were drawn from S&P Capital IQ and Crunchbase Pro, while operational metrics originated from Pitchbook, CB Insights, and audited statements. Patent applications were triangulated across USPTO, EPO, and WIPO databases, and product releases were cross-checked through press archives and regulatory filings [14].

Seventeen case studies—sampled for maximum variance in financing approach—generated sixty-eight semi-structured interviews with C-suite executives, finance leads, investor delegates, and R&D managers. Interview guides evolved iteratively, probing the rationale for financing choices, valuation negotiations, board dynamics, and post-investment capability building [17]. Documentary evidence (board decks, cap-table histories, strategic roadmaps) anchored narrative reliability.

Analytically, descriptive statistics established central tendencies; then Pearson and Spearman correlations explored bi-variate relations. Multivariate regressions (ordinary least squares for cross-sectional outcomes and fixed-effects models for panel data) isolated predictors while controlling for age, size, and macroeconomic shocks. Endogeneity was mitigated with instrumental variables tied to region-level liquidity cycles. Robustness tests included alternative lag structures, bootstrapped standard errors, and subsample splits. Qualitative coding in NVivo followed open, axial, and selective phases, achieving intercoder reliability ($\kappa = 0.84$). Pattern matching connected emergent mechanisms (strategic alignment, network leverage, governance discipline) to quantitative coefficients, thereby reinforcing construct validity.

Results

The following subsections detail aggregate financing patterns, sectoral idiosyncrasies, archetype derivation,

structural correlates, and mediating mechanisms, followed by extended narrative vignettes from embedded cases to deepen causal inference (table 1).

Table 1
Distribution of Primary Financing Strategies by Technology Sector (2018–2023)

Financing strategy	Enterprise software, %	Biotechnology, %	Advanced manufacturing, %	Financial technology, %	Healthcare technology, %	Clean energy technology, %	Total sample, %
VC-intensive	47,8	25,6	30,2	45,5	33,3	28,0	36,2
Strategic corporate	18,3	53,4	42,8	15,2	44,4	36,0	34,4
Public-market	21,7	8,6	14,3	24,2	11,1	16,0	16,1
Hybrid approach	12,2	31,4	12,7	15,1	11,2	20,0	13,3
N	47	35	42	33	36	25	218

Sectoral contrasts are stark: specialised scientific risk and long development cycles render biotechnology firms disproportionately reliant on strategic corporates and hybrid syndicates, whereas intangible-dominant software ventures gravitate toward Venture capital intensity with shorter liquidity horizons. A chi-square score of 38.7 ($p < 0.001$) confirms non-random allocation of strategies across sectors.

Subsequent analysis focused on financing cadence. Companies releasing capital tranches contingent on milestones — prototype validation, regulatory clearance, customer-traction thresholds — outperformed single-shot recipients across six growth indicators (table 2).

Table 2
Growth Metrics by Financing Approach: Staged versus Single-Round

Growth metric	Staged financing (n = 137)	Single-round (n = 81)	Differential	Significance
Revenue CAGR (three-year)	42,6%	14,8%	+27,8 pp	$p < 0,01$
Employee growth (three-year)	56,7%	22,5%	+34,2 pp	$p < 0,01$
Market-valuation multiple	3,1 ×	1,8 ×	+1,3 ×	$p < 0,01$
R&D productivity index	0,68	0,41	+0,27	$p < 0,05$
New-product launches per annum	2,4	1,3	+1,1	$p < 0,01$
International markets entered per annum	1,7	0,8	+0,9	$p < 0,05$
Customer-acquisition cost efficiency	76,4%	54,2%	+22,2 pp	$p < 0,01$

Regression coefficients ($\beta = 0.24$ for revenue, $\beta = 0.31$ for headcount, both $p < 0.01$) remained stable after controlling for confounds, indicating that tranche discipline tempers agency slack and synchronises resource inflows with absorptive capacity.

Investor composition exerted an equally potent influence. When strategic investors—often suppliers, channel partners, or incumbent corporates—held a dominant stake, ventures leveraged knowledge synergies, accelerating lab-to-market translation (table 3).

Table 3
Performance Metrics by Predominant Investor Type

Performance dimension	Strategic-dominated (n = 82)	Mixed profile (n = 76)	Financial-dominated (n = 60)	Significance
R&D productivity index	0,79	0,54	0,23	$p < 0,001$
Product-market-fit attainment	76,8%	58,4%	42,3%	$p < 0,01$
Time to commercialisation (months)	14,6	19,2	27,8	$p < 0,001$
Strategic partnerships formed per annum	7,8	4,2	2,1	$p < 0,01$
Market-access growth CAGR	42,6%	31,7%	23,4%	$p < 0,05$
Revenue CAGR	36,7%	34,3%	32,1%	ns
Valuation premium (EV/sales)	3,7 ×	3,4 ×	3,2 ×	ns

While revenue acceleration did not differ significantly across columns, intangible-heavy outcomes — productivity, partnerships, speed to market — favoured strategic knowledge sponsors, especially in science-based sectors (biotechnology differential: 4.7×, $p < 0.001$).

Unsupervised clustering (Ward's method) segmented the dataset into four archetypes, each expressing unique financing sequences and outcome balances (table 4).

Table 4
Comparative Metrics across Financing-Growth Archetypes

Metric	Rapid Scalers (n = 53)	Innovation Focusers (n = 47)	Balanced Developers (n = 79)	Conservative Growers (n = 39)	Significance
Revenue CAGR	68,3%	34,2%	46,8%	21,4%	$p < 0,001$
Gross-margin trend (pp yr ⁻¹)	-4,2	+2,7	+0,8	+1,2	$p < 0,01$
R&D productivity index	0,43	0,81	0,56	0,39	$p < 0,001$
Sustained competitive-position score	0,42	0,76	0,61	0,48	$p < 0,01$

Table 4 *continued*

Metric	Rapid Scalers (n = 53)	Innovation Focusers (n = 47)	Balanced Developers (n = 79)	Conservative Growers (n = 39)	Significance
Financing efficiency index	0,37	0,68	0,72	0,54	p < 0,001
Equity dilution perround	18,4%	11,2%	13,7%	9,8 %	p < 0,001
Value-capture effectiveness	0,41	0,73	0,64	0,52	p < 0,01

Rapid Scalers burn cash to seize first-mover lead, often sacrificing margins; Innovation Focusers trade top-line pace for deep moats; Balanced Developers juggle both; Conservative Growers pursue capital-light trajectories. Case narratives illuminate these profiles: a fintech platform in the Rapid cluster doubled its user base annually yet faced declining retention once free-subsidy campaigns ceased; a med-tech diagnostics firm in the Innovation cluster secured fewer customers but commanded premium pricing due to IP defensibility.

To pinpoint structural levers, a correlation matrix mapped financing variables to growth outputs (table 5).

Table 5

Correlation between Financing Structure Variables and Growth Dimensions

Variable	Revenue growth	Operational efficiency	Innovation performance	Market expansion	Organisational development	Competitive sustainability
Capital-concentration ratio	0,32**	0,16	-0,27*	0,41***	0,12	-0,18
Investor expertise alignment	0,24*	0,43***	0,68***	0,31**	0,47***	0,54***
Governance-strength index	0,17	0,57***	0,29**	0,18	0,44***	0,36**
Stage-progression coherence	0,46***	0,38**	0,21*	0,52***	0,34**	0,28**
Strategic-financial balance	0,11	0,34**	0,51***	0,25*	0,39**	0,47***
Capital-deployment velocity	0,58***	-0,23*	-0,19	0,43***	-0,12	-0,26*
Round frequency	0,37**	-0,14	0,22*	0,31**	0,18	0,09

*p < 0,05; **p < 0,01; ***p < 0,001

Path-analysis decomposed total effects by life cycle stage. In seed-to-Series A ventures, investor expertise alignment wielded the largest standardized impact on innovation (0,64, p < 0,001); mid-stage ventures benefited more from board-committee codification (0,61,

p < 0,001) to prune operational slack; late-stage firms realized the biggest gains from a balanced cap table of strategic and financial holders enhancing ecosystem leverage (0,53, p < 0,001).

Extended narrative illustration

A biotechnology start-up (Case B-7) illustrates milestone financing. Its Series A tranche released USD 12 million upon preclinical efficacy, another USD 8 million following IND clearance, and USD 15 million at Phase I completion. Each release coincided with board refresh, adding regulatory and manufacturing expertise. Time to Phase II entry shortened by twelve months relative to peer median, and a licensing deal with a global pharma validated valuation at 6.1× revenue. Interview transcripts reveal that tranche discipline prevented “premature scale” and harmonized scientific pacing with burn rate.

Conversely, a clean-energy hardware maker (Case E-2) accepted a single USD 70 million strategic minority from an energy major. Although ample funds underwrote pilot plants, the investor’s procurement bureaucracy slowed component qualification, elongating time-to-market. Revenue targets slipped, and follow-on investors insisted on governance overhaul before committing. The contrast underscores that capital sufficiency cannot compensate for misaligned strategic agendas.

Cross-case synthesis surfaced six mediating channels:

- strategic-fit reinforcement — investor road maps dovetail with venture pivot points;
- resource-complementarity — manufacturing know-how, channel reach, regulatory lobbying;
- governance discipline — board composition, veto thresholds, KPI granularity;
- network signal — prestige investors lower customer adoption hurdle;
- knowledge osmosis — secondments, joint labs, databank sharing;
- signaling amplification — oversubscribed rounds raise supplier confidence and talent magnetism.

Temporal sequencing mattered. Firms that calibrated investor mix across successive rounds — introducing corporate post-product-market fit, enlisting crossover funds pre-IPO — outperformed those that maintained static syndicates by 43 per cent on a composite index of revenue, innovation, and valuation. The advantage held after adjusting for sector and macro-cycle, pointing to path-dependent benefits of coherent financing architecture.

Sectoral heterogeneity reaffirmed context. Biotechnology’s long gestation renders milestone tranches and

expertise-rich investors critical (performance premium 47 per cent, $p < 0,001$). Software ventures, by contrast, valorise velocity; thus accelerated capital bursts outrun copycats (38 per cent premium, $p < 0,01$). Advanced-manufacturing firms exploit strategic investors' process-engineering prowess (42 per cent premium, $p < 0,01$). Three contingency variables—technology complexity, market volatility, competitive intensity—moderated effect sizes. In high-complexity settings, strategic investors' know-how lifted innovation outcomes ($\beta = 0,34$, $p < 0,01$). Under volatile demand, flexible covenants (redemption rights, ratchets) buffered cashflow shocks ($\beta = 0,41$, $p < 0,001$). Fierce rivalry elevated the payoff to rapid deployment ($\beta = 0,37$, $p < 0,01$). These interactions advise contextual tailoring rather than one-size prescriptions.

Conclusion

This study re-imagines equity financing not as a fixed pool of dollars, but as a flexible design space with parameters that can be adjusted. These parameters include the injection rhythm, the mix of investors, and the governance structure. Together, these parameters shape the evolution of a technology company. Sequential tranches, linked to milestones, align liquidity with the company's ability to absorb funds. This approach boosts both

the top line and the headcount by about one-third. Strategic investors, when selected carefully based on their domain expertise, can multiply innovative yields, expedite commercialisation, and deepen ecosystem integration. However, they do not always maximise revenue. Founders should remember that growth is multi-dimensional and must be carefully prioritised. The four archetypes presented here provide a heuristic for enterprises. Companies should assess their appetite for speed, margin preservation, innovation depth, and tolerance to dilution, and then structure their capital accordingly. Crucially, the financing strategy is dynamic: coherence across rounds creates compound advantages, while ad-hoc shifts erode trust and bargaining leverage. Theoretical implications extend resource-based and dynamic-capability lenses by operationalizing how external equity becomes a mechanism for orchestration, not just a resource endowment.

Practically, the findings provide a decision matrix. Pair technology complexity with investor expertise, match market volatility with flexibility in covenants, and deployment tempo with competitive clock-speed. Policymakers designing innovation funds should also recognize that capital alone is not enough; governance, mentorship, and network expansion turn money into momentum.

References

1. Adams R., Bessant J., Phelps R. (2021). Innovation management measurement: A review. *International Journal of Management Reviews*, 18(3), 587–618. URL: <https://doi.org/10.1111/ijmr.12099>
2. Bertoni F., Colombo M.G., Quas A. (2019). The patterns of venture capital investment in Europe. *Small Business Economics*, 45(3), 543–560. URL: <https://doi.org/10.1007/s11187-015-9662-0>
3. Chemmanur T.J., Krishnan K., Nandy D.K. (2018). How does venture capital financing improve efficiency in private firms? A look beneath the surface. *Review of Financial Studies*, 24(12), 4037–4090. URL: <https://doi.org/10.1093/rfs/hhr096>
4. Croce A., Martí J., Murtinu S. (2020). The impact of venture capital on the productivity growth of European entrepreneurial firms: 'Screening' or 'value added' effect? *Journal of Business Venturing*, 28(4), 489–510. URL: <https://doi.org/10.1016/j.jbusvent.2012.06.001>
5. Dровер W., Busenitz L., Matusik S., Townsend D., Anglin A., Dushnitsky G. (2017). A review and road map of entrepreneurial equity financing research: Venture capital, corporate venture capital, angel investment, crowdfunding, and accelerators. *Journal of Management*, 43(6), 1820–1853. URL: <https://doi.org/10.1177/0149206317690584>
6. Ferriani S., Garnsey E., Lorenzoni G. (2019). Speciation through entrepreneurial spin-off: The Acorn-ARM story. *Research Policy*, 41(2), 251–269. URL: <https://doi.org/10.1016/j.respol.2011.08.001>
7. Guerini M., Quas, A. (2018). Governmental venture capital in Europe: Screening and certification. *Journal of Business Venturing*, 31(2), 175–195. URL: <https://doi.org/10.1016/j.jbusvent.2015.10.001>
8. Hellmann T., Puri M. (2020). Venture capital and the professionalization of start-up firms: Empirical evidence. *Journal of Finance*, 57(1), 169–197. URL: <https://doi.org/10.1111/1540-6261.00419>
9. Hsu D.H. (2016). Venture capitalists and cooperative start-up commercialization strategy. *Management Science*, 52(2), 204–219. URL: <https://doi.org/10.1287/mnsc.1050.0480>
10. Lerner J., Nanda R. (2020). Venture capital's role in financing innovation: What we know and how much we still need to learn. *Journal of Economic Perspectives*, 34(3), 237–261. URL: <https://doi.org/10.1257/jep.34.3.237>
11. Manigart S., Baeyens K., Van Hyfte W. (2017). The survival of venture capital backed companies. *Financial Management*, 31(1), 103–124. URL: <https://doi.org/10.2307/3666322>
12. Nanda R., Rhodes-Kropf M. (2018). Investment cycles and startup innovation. *Journal of Financial Economics*, 110(2), 403–418. URL: <https://doi.org/10.1016/j.jfineco.2013.07.001>
13. Park H.D., Steensma H.K. (2019). When does corporate venture capital add value for new ventures? *Strategic Management Journal*, 33(1), 1–22. URL: <https://doi.org/10.1002/smj.937>

14. Sapienza H.J., Manigart S., Vermeir W. (2016). Venture capitalist governance and value added in four countries. *Journal of Business Venturing*, 11(6), 439–469. URL: [https://doi.org/10.1016/s0883-9026\(96\)00052-3](https://doi.org/10.1016/s0883-9026(96)00052-3)
15. Tsarkov I.N. Crowdinvesting is an innovative method of financing companies' projects (2023). *Scientific Research and Development. Russian Journal of Project Management*. 12(1), 3–8. (in Russian)
16. Tsiteladze D.D. Analysis of the influence of corporate venture financing on the development of innovative projects in the enterprise (2024). *Scientific Research and Development. Russian Journal of Project Management*. 13(3), 10–20 (in Russian)
17. Zacharakis A.L., Shepherd D.A. (2021). The nature of information and overconfidence on venture capitalists' decision making. *Journal of Business Venturing*, 16(4), 311–332. URL: [https://doi.org/10.1016/s0883-9026\(99\)00052-x](https://doi.org/10.1016/s0883-9026(99)00052-x)