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Abstract. The first part of the work presents the re-
sults of numerical experiments with the magnetohydro-
dynamic model of “shallow water” to assess the degree 
of influence of the magnetic field on the development of 
instabilities conditioned by a combination of inhomoge-
neities in the mean flow and the mean magnetic field. 
Normal mode calculations have confirmed the earlier 
obtained result on the different influence of weak and 
strong magnetic fields on the instability of differential 
rotation. Calculations have shown that a weak magnetic 
field stabilizes the development of instabilities, whereas 
a strong magnetic field, on the contrary, enhances the 
instability. Azimuthal inhomogeneities of differential 
rotation in all cases contribute to the development of 
instabilities. In the second part of the work, we examine 
the spatial structure of normal modes and make an at-
tempt to interpret the torsional oscillations observed in 
the atmospheres of Earth and the Sun. Calculations have 

shown that regular axisymmetric disturbances can be 
caused by the formation of a cyclonic vortex above the 
pole, which is characteristic of Earth's atmosphere and, 
possibly, of the Sun's atmosphere. The least damped 
normal mode of a stable polar cyclone has a structure of 
torsional oscillations. Flow anomalies and the develop-
ment of an anticyclonic eddy in winter at midlatitudes 
destroy torsional oscillations and lead to a rapid ampli-
fication of normal modes, which are more complex in 
structure. 

Keywords: hydrodynamics, atmosphere, normal 
modes, magnetic field, torsional oscillations. 

 
 
 
 

 

 

INTRODUCTION 

Of particular interest in geophysical hydrodynamics are 
the generation mechanisms of large-scale fields and their 
spatial structure on time scales exceeding the rotation peri-
ods of astrophysical objects. Some anomalies of large-scale 
fields are formed under external forcing such as forcing of 
radiative and thermal energy to planetary atmospheres, yet 
some field anomalies are not directly related to external 
forcing, they are due to the internal dynamics of the envi-
ronment. In Earth's atmosphere, these are quasi-stationary 
North Atlantic and North Pacific Lows, subtropical anticy-
clones in the troposphere, blockings, stratospheric polar 
vortices, traveling waves with periods of 4, 5, 10, 16, 25... 
days, etc. [Large-scale, 1988; Branstator, Held, 1995]; in 
the Sun, large-scale magnetic fields associated with com-
plexes of activity on the Sun, active longitudes in sunspot 
activity, and solar cyclicity [Miesch, 2005; Bumba, 1979; 
Bumba, Makarov, 1989; Bumba, Howard, 1965; 
Tikhomolov, 2005; Mordvinov et al., 2012, 2013]. There 
is no consensus on the generation mechanisms of these 
anomalies. Some of them may result from generation of 
normal modes; others, from the development of nonlineari-
ty, for example, Rossby wave breaking (atmospheric 
blocking anticyclones), traveling and stationary wave in-
teraction [Large-scale, 1988]. 

Generation of large-scale magnetic field anomalies 
on the Sun most likely occurs in the tachocline, a thin 
shear layer between radiative and convective zones 
[Cally et al., 2003; Dikpati, Gilman, 2001; Gilman et 
al., 2007]. At supercritical horizontal velocity gradients 
and subcritical vertical temperature gradients, two-
dimensional turbulence can develop in this layer; which 
transfers the energy of disturbances toward small wave 
numbers. This effect is well known both on the Sun and 
in Earth's atmosphere [Miesch, 2005; Danilov, Gurari, 
2000]. A number of studies have assessed the magnetic 
field effect on the growth rate of instability [Cally et al., 
2003; Dikpati, Gilman, 2001; Gilman et al., 2007; Gil-
man, Fox, 1997]. Calculations have shown that instabil-
ity increases with increasing mean magnetic field. 
Nonetheless, according to other estimates, the magnetic 
field should stabilize the flow [Mishin, Tomozov, 
2014]. Whether these contradictory views can be recon-
ciled is still an open question. Our numerical experi-
ments in an evolutionary model with a frozen-in mag-
netic field have demonstrated that such a possibility 
exists: weak fields can stabilize the flow, whereas 
strong fields can disturb it [Mordvinov et al., 2019]. 
However, numerical calculations of flow dynamics de-
pend on many parameters: time and space steps, number 
of harmonics in expansion, the spatial structure of dis-
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turbances at a reference time, and the spatial structure of 
mean flow. This paper is a sequel to the studies initiated 
by Mordvinov et al. [2019]; however, instead of com-
plex numerical calculations of flow dynamics, we em-
ploy a simpler and widely-accepted method of normal 
modes [Dymnikov, Skiba 1986; Dymnikov, Filatov 
1988]. 

In this method, the velocity field and magnetic field 
disturbances are given as the product of an exponent by 
an arbitrary function of spatial coordinates 

( ) ( )σ
0ψ λ, μ, ψ λ, μ ,tt e′ =   

( ) ( )0, , , ,tt eσ′χ λ µ = χ λ µ   

where λ is the longitude; μ=cosθ, θ is the polar angle, and 
are substituted in a linearized system of equations. These 
oscillations are called normal modes. The coefficients σ 
and the functions ψ0, χ0 characterizing normal modes are 
generally complex and are calculated by solving the eigen-
value problem of a linear operator. The normal mode is 
growing at ( )Re 0,σ >  damped at ( )Re 0,σ <  neutral at 

( )Re 0σ = , and stationary at ( )Im 0.σ =  At each point in 
space, the mode describes a harmonic oscillation with the 
same period, but different amplitudes and initial phases. 
The values of σ, ψ0, χ0 depend on the physical parameters 
of the problem: the spatial structure of mean flow, the 
structure of mean magnetic field, fluid viscosity, and mag-
netic viscosity.  

Unlike the studies that only examined the stability of 
axisymmetric flows on the Sun, for example, numerous 
studies by Gilman and co-authors [Dikpati, Gilman, 
2001; Dikpati, Gilman, 2005; Gilman, 1967; Gilman, 
Fox, 1997; Gilman et al., 2007], we also take into ac-
count the influence of the azimuthal inhomogeneities of 
the stationary mean flow and of the stationary mean 
magnetic field, which may be generated by penetrating 
convection and/or relic magnetic field, on the develop-
ment of instability of longitudinal inhomogeneities. 
This, in addition to the proposed analysis method, is the 
novelty of our work. 

On large spatial scales, Earth's atmosphere is con-
vectively stable, as is the tachocline on the Sun, but it is 
horizontally inhomogeneous, especially in the region of 
jet streams; therefore, both stationary large-scale anom-
alies such as subtropical anticyclones or polar vortices 
and traveling disturbances can be generated in it: 
Rossby waves at midlatitudes, Kelvin waves, planetary 
gravity waves in the tropics [Gill, 1986]. Interesting 
objects are regular oscillations in the velocity, pressure, 
and temperature fields with periods 5–25 days 
[Mordvinov, Latysheva, 2013; Zorkaltseva et al., 2019], 
identified after pre-filtration and zonal averaging. The 
oscillations propagate in the meridional direction over 
long distances. We call these oscillations torsional by 
analogy with similar oscillations on the Sun. Using one-
point correlations with time lag, the spatial structure and 
dynamics of oscillations have been established, but their 
origin has not yet been clarified. Torsional oscillations on 
the Sun are well known [Altrock et al., 2006]. The uni-
versality of this phenomenon suggests that it is based on 

some common properties of large-scale hydrodynamic 
flows. In [Mordvinov and Zorkaltseva, 2022], we drew 
attention to the fact that the structure of torsional oscilla-
tions resembles the structure of one of the normal modes 
with a fairly realistic configuration of the mean flow. In 
this paper, we continue this research.  

In the first part of this paper, we examine the degree of 
axisymmetric flow instability with the differential rotation 
profile of the Sun, proposed in [Kitchatinov, Rüdiger, 
2009], and the non-axisymmetric flow, as in [Mordvinov et 
al., 2013], taking into account the magnetic field.  

In the second part, we study the spatial structure of 
normal modes of the flow, conditioned by the combina-
tion of a polar cyclonic vortex and an anticyclonic vor-
tex at midlatitudes. In a stylized form, this combination 
is representative of large-scale features of stratospheric 
flows. Prominence is given to axisymmetric modes re-
sembling torsional oscillations [Zorkaltseva et al., 
2019]. 

 
STABILITY OF FLUID FLOW  
WITH A MAGNETIC FIELD  
MODEL 

To describe the hydrodynamic component of the 
flow, we use a barotropic quasi-geostrophic numerical 
model [Dikpati, Gilman, 2001]. In atmospheric physics, 
models of this type are applied to teleconnections, 
Rossby waves, low-frequency oscillations (North Atlan-
tic Oscillation, Arctic/Antarctic Oscillations), conditions 
of occurrence and dynamics of large-scale anomalies in 
the atmosphere, interhemispheric interactions [Large-
scale, 1988]. It is especially worthwhile using the two-
dimensional quasi-geostrophic models for the strato-
sphere, where there is no vertical convection, and the 
horizontal scale of anomalies of meteorological fields is 
significantly larger than in the troposphere [Gill, 1986].  

To study the Sun, the Lorentz force is included in 
the hydrodynamic model and the vortex equation is 
complemented by the equation of magnetic field dy-
namics. Further transformations depend on the purpose 
and method of research. For example, Fournier et al. 
[2022] employ a similar model to estimate the effect of 
viscosity on planetary waves. To examine the initial 
development of instability, the resulting system of equa-
tions is linearized, and either numerical computing of 
the evolution of disturbances are made or normal mode 
characteristics are calculated [Dikpati, Gilman, 2001; 
Dikpati, Gilman, 2005; Gilman, Fox, 1997]. In 
[Mordvinov et al., 2019], we followed the former meth-
od, and now we adopt the latter one, which is simpler 
and more universal. 

The hydrodynamic model is based on the equation 
of quasi-geostrophic potential vortex 

( ) ( )

( ) ( )
2 2

3

1 2,

,

L
J

t R R
r K f

∂ ψ Ω ∂ψ
= − ψ ∆ψ − −

∂ ∂λ
− ∆ψ − ∆ ∆ψ − ψ

 (1) 

where ( ), f g f gJ f g ∂ ∂ ∂ ∂
≡ −
∂λ ∂µ ∂µ ∂λ

 is the Jacobi operator; 
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( )2
D ;L L−ψ ≡ D − ψ R is the solar radius; ψ is the stream 

function; l=2Ωμ is the Coriolis parameter; Ω is the angular 
velocity of the Sun; ( )D 0 0/ / 2 sin 45L gh l gh≡ ≈ Ω   
is the Rossby — Obukhov deformation radius; h0 is the 
average thickness of a homogeneous fluid layer; λ is the 
longitude; μ=cosθ; θ is the polar angle; r=1/T0 is the 
Rayleigh friction coefficient; K is the turbulent hyper-
viscosity coefficient. The value of K is chosen so that 
the third degree hyperviscosity is equal to the usual tur-
bulent viscosity for the dipole harmonic of a stream 
function expansion in harmonics [Mordvinov et al., 
2013]. The function f(ψ) characterizes the forcing 
caused by small-scale vortices.  

If the stationary solution of the equation is known, f 
can be determined from the relation  

( ) ( ) ( )

( )

T 02

3
2

1 , , /

2 .

f G J J lh h
R

r K
R

 = ψ = − ψ ∆ψ + ψ − 

Ω ∂ψ
− − ∆ψ − ∆ ∆ψ

∂l

  

In this case, the original equation takes the form 

( ) ( ) ( ).
L

G G
t

∂ ψ
= ψ − ψ

∂
  

Since the Jacobi operator is nonlinear, 

( ) ( ) ( ).G G Gψ − ψ ≠ ψ −ψ   

It can be simplified if the stationary solution of the vor-
tex equation has zonal or meridional symmetry. In this 
case, Jacobi operators are zero and only linear terms 
remain in the expression for f. 

If a fluid is magnetized, the vertical component of the 
Lorentz force vortex must be included in Equation (1). If a 
magnetic field is horizontal and div(H)=0, the expression 
for this component takes the form [Mordvinov et al., 2019] 

( ) ( ) ( )rot rot ,zz
∇× × = ∇ = ∇ ∆χ  H H H H H  (2) 

where χ is the magnetic stream function related to the hori-
zontal magnetic field vector H by the relation  

, , 0 .
y x

 ∂χ ∂χ
= ×∇χ = − ∂ ∂ 

H k i j   

In the absolute Gaussian units (centimeter—gram—
second), the coefficient k0 is 1/(4πρ), the magnetic field 
induction is measured in Gauss. Since the plasma density 
is assumed to be constant, we introduce a new variable 

0 .k′χ = χ  (the magnetic field dimension in this case 
will be the same as the velocity one — cm/s). At the base 
of the convection zone, the density 2 310 g/cm−ρ ≈ and 

the multiplier 0k  are numerically equal 

( ) ( )2
0 1/ 4 10 / 4 25 / 2.82.k = πρ = π = π =   

Given the Lorentz force, the equation of potential 
vortex becomes 

( ) ( ) ( )

( ) ( )

2

3
2

1 , ,

2 .

L
J J

t R

r K G
R

∂ ψ
= − ψ ∆ψ − χ ∆χ −  ∂

Ω ∂ψ
− − ∆ψ − ∆ ∆ψ − ψ

∂λ

 (3) 

Since the velocity field is vortex-like, the equation of 
magnetic field induction has the form 

( ) ( ) mp.F
t

∂
= − ∇ + ∇ −

∂
H V H H V  (4) 

If we take a rotor from (4) and express H in terms of the 
magnetic stream function, we obtain an equation for χ 

( ) ( ){ }
( )

2

3

1 , ,

.m m

J J
t R

r K

∂∆χ
= − ψ ∆χ − χ ∆ψ −

∂
− ∆χ − ∆ ∆χ

 (5) 

where ,m mr K  are magnetic viscosity parameters. Sup-
pose that large-scale flow anomalies reflect the configu-
rations of the fastest growing or slowest decaying low-
amplitude disturbances. Represent the stream functions 
in the form of ,′ψ = ψ +ψ .′χ = χ + χ Taking into ac-
count the smallness of perturbations ,′ψ ψ  ,′χ χ , 
linearize Equations (3) and (5). The equations for per-
turbations of ′ψ  and ′χ  take the form 

( )
( ) ( ){

( ) ( ) }
( )

( ) ( ){
( ) ( ) } ( )

2
D

2

2

3

2

3
m m

1 , ,

2, ,

,
1 , ,

, , .

L
J J

t R

J J
a

r K

J J
t R
J J r K

− ′∂ D − ψ
′ ′= − ψ Dψ + ψ Dψ −  ∂

′Ω ∂ψ′ ′− χ Dχ + χ Dχ − −   ∂λ
′ ′− Dψ − DD ψ

′∂Dχ ′ ′= − ψ Dχ + ψ Dχ −  ∂
′ ′− χ Dψ + χ Dψ − Dχ − DD χ  

 (6) 

where ψ and χ are the average stream functions satisfy-
ing the system of stationary equations. 

Suppose 1 ,χ = α ψ 1 .constα =  This means that in a 
stationary flow, fluid moves along magnetic field lines. 
Equations (6) take the form  

( )
( ){

( )( ) }
( )

2
D

12

1 2

3

1 ,

2,

,

L
J

t R

J r
R

K

− ′∂ D − ψ
′ ′= − ψ −α χ Dψ +∂

′Ω ∂ψ′ ′ ′+ ψ D ψ −α χ − − Dψ − ∂λ
′− DD ψ

  

( )( ){
( )( )} ( )

12

3
1 m m

1 ,

, .

J
t R

J r K

′∂∆χ ′ ′= − α ψ −χ ∆ψ −
∂

′ ′ ′ ′− ψ ∆ α ψ −χ − ∆χ − ∆ ∆χ
 (7) 

To determine α1, use the condition: at a speed equal to 1 
m/s, the coefficient must be such that the magnetic field 
strength is 1 G. It can be shown that in this case 
α1=0.0035. In the linearized problem, the evolution of 
perturbations does not depend on their amplitude at a 
reference time, but depends on the coefficient α1. In 
numerical experiments, we set the values of α1 corre-
sponding to the field strengths of 1, 10, 100, 1000, and 
10000 G. 

The dynamics of perturbations , ,′ ′ψ χ determined by 
system of equations (7) depends on many parameters: dif-
ferential rotation characteristics, the structure of the mean 
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flow and the mean magnetic field, turbulent viscosity, and 
Rayleigh friction characteristics. Examine the dependence 
of the mean flow instability on two parameters: the coeffi-
cient α1 and the amplitude of differential rotation anoma-
lies. Represent the stream function of mean flow as the 
sum of differential rotation and mean flow perturbation 
( ) ( ) ( )s as, , .ψ µ λ = ψ µ +ψ µ λ  We specify the differential 

rotation profile in the form proposed in [Kitchatinov, 
Rüdiger, 2009]: 

( )( )( )2 4
0 1 1 cos cos ,a f fΩ = Ω − − θ+ θ  (8) 

where Ω0 is the differential angular velocity of the Sun 
at the equator, the coefficients a, f define the differential 
rotation profile steepness. Take the e-folding times of 
the Rayleigh damping to be T=500 and T=1000 rota-
tions.  

Assume that ,m mr r K K= = . The mean flow pertur-
bation is specified in the form of a spherical harmonic 

( ) ( )* 5
6 cos 5k P µ λ [Mordvinov et al., 2013]. Since the 

mean flow perturbation amplitude k is a relative value, 
Figure 1 illustrates the total distributions of the differen-
tial rotation stream function and differential rotation 
anomalies at the k values we use. 

To analyze the mean flow instability, we represent 
the stream function perturbation as a normal mode 
[Dymnikov, Filatov, 1988], and write the functions ψ0, 
χ0 as the sum of spherical harmonics 

( ) ( )

( ) ( )

0

0

, , , ,

, , , ,

t

t

t e Y

t e Y

σ
γ γ

γ

σ
γ γ

γ

ψ λ µ = ψ µ λ

χ λ µ = χ µ λ

∑

∑
 (9) 

where σ is the complex frequency; γ=(m, n)=(m γ, n γ) is 
the wave vector; m is the zonal wave number; n is the 
degree of spherical function ( ), .m im

nY P e λ
γ λ m =  Follow-

ing [Gilman, Fox, 1997], we take the complex frequency 

σ to be the same for hydrodynamic and magnetic dis-
turbances, which, generally speaking, is not obvious. 

Reduce Equations (7) to a dimensionless form and 
substitute solutions in the form (9). Take the solar 
radius as the length scale, and Ω—1 as the time scale. 
Introduce designations 

( ){ }33 6
1

1 1 / ,r r Kn n a= + +
Ω

  

( )1 ,nk n n′ = +   

( )( )21 ,nk n n F= + +   

where D/F R L=  is the Froude number. Taking into 
account the property of spherical functions, 

( ) 21 / ,Y n n Y Rγ γ∆ = − + after integration over a spherical 
surface, we obtain equations for coefficients of the 
stream function expansion ψγ, χγ 

( )( )

( ) ( )

( )( )

( ) ( )

1

1

1

1

1 2

1 , ,

1

1 , .

n

n
S

n

n
S

k n n r i m

Y J Y G dS

k n n r

Y J Y G dS
γ

γ γ

∗
′γ γ γ γ

γ

γ γ

∗
′γ γ γ γ

σψ = ψ − + + +

 
+ ψ −α χ Ω  
′σχ = χ + +

′+ α ψ −χ
Ω

∑ ∫

∑ ∫

 (10) 

or in the matrix form 

,
,

A B
A B

′ ′ ′γγ γ γγ γ γ

′ ′ ′γγ γ γγ γ γ

′ψ + χ = σ ψ

′ ′ ′ψ + χ = σ χ
 (11) 

 

 

Figure 1. Stream functions of the sum of axisymmetric differential rotation and anomalies ( ) ( )5
6

* cos 5k P µ λ at different k values 
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where 

( )

( )1

1 ,

2 1 ,

n
n S

A Y J Y G dS
k

i m r n n

∗
′ ′γγ γ γ

′

′γγ

  = + 
Ω   
′ ′ ′+d − +  

∫   

( )1 , ,n
n S

B Y J Y G dS
k

∗
′ ′γγ γ γ

′

 α  = −  
Ω   
∫   

( )1 , ,n
n S

A Y J Y G dS
k ′γ

∗
′γγ γ

′

 α  ′ ′=  
Ω   
∫   

( ) ( )1
1 , 1 ,n
n S

B Y J Y G dS r n n
k

∗
′ ′ ′γγ γ γ γγ

′

  ′ ′ ′ ′= − − d +    Ω   
∫   

,n nG k= ∆ψ + ψ  ,n nG k′ = ∆ψ − ψ  / ..′σ = σ Ω   

Inserting Gn nG′  in the expressions for matrix element 
,A ′γγ ,B ′γγ ,A ′γγ′ ,B ′γγ′  we calculate double integrals, using 

quadratures. The λ integral is calculated by the quadra-
ture formula of rectangles; and the μ integral, by the 
Gauss quadrature [Dymnikov, Skiba, 1986]:  

( ) ( )
1

11

,
K

k k
k

f d C f
=−

µ µ ≈ µ∑∫   

where μk are the roots of Legendre polynomials Pk(μ). 

( )
( )

2

2
1

2 1
, 1, 2, ..., .k

k

k k

C k K
KP −

−µ
= =
 µ 

  

The number of nodes in the variable λ was 144; in the vari-
able μ, 64. 

If we form a block matrix 

1

A B A B
D

A B A B
′ ′ ′ ′γγ γγ γγ γγ

′ ′ ′ ′γγ γγ γγ γγ

α   
= =      ′ ′ ′ ′α   

 and a vector ,x γ

γ

ψ 
=   χ 

 

system (11) can be rewritten as a matrix equation for 
eigenvalues and eigenfunctions of the matrix D 

.Dx x′= σ  (12) 
The eigenvalues ′σ determine the normal mode frequen-
cies (complex); and the eigenvectors x, the spatial struc-
ture of normal modes. Both depend on the configuration 
of the mean flow and the mean magnetic field, viscosity 
parameterization, etc. The real part of the frequency ′σ  
defines the normal mode amplitude increment; the imagi-
nary part, the oscillation frequency. 

The dependence of normal modes on external forcing 
can be studied theoretically and experimentally. One of the 
theoretical methods, developed by E. Schrödinger, is basical-
ly as follows [Marchuk et al., 1986]. With changing external 
forcing, the operator D in (12) changes, and we come to the 
problem 

.Dx x= σ

    (13) 

In general, the solution of (13) requires an analysis of 
the spectrum of both original and perturbed operators. 
Suppose that the perturbation of D is determined by the 

parameter ε so that D  is an analytical function regular 
in the vicinity of the point ε=0 : 

( )

0
,i i

i
D D

∞

=

= ε∑  (14) 

where D(0)=D, D (i) are some linear operators. 
The eigenvalue ( )σ = σ ε  and eigenfunction 

( )x x= ε  of D can also be represented as series in 
power of ε 

( )

( ) (0)
0

0

( ) (0)
0

0

( ) , ,

, .

i i

i

i i

i
x x x x x

∞

=

∞

=

σ ≡ σ ε = ε σ σ = σ

≡ ε = ε =

∑

∑





 (15) 

Substituting the series in Equation (13), we obtain 
a system of equations 

( )
( )
( )

(0)
0

(1)
0 1

( )
0

0,

,

,n
n

D E x

D E x f

D E x f

−σ =

−σ =

−σ =

 (16) 

in which the right-hand sides are determined by the 
formulas 

( ) ( ) ( ) ( )

1 1
.

n n
i n i i n i

n
i i

f x D x− −

= =

= σ −∑ ∑  (17) 

To resolve (16), the condition of orthogonality of fn 
to the element 0x∗  — the solution of the conjugate uni-

form problem — must be fulfilled 0 0 0 :D x x∗ ∗ ∗= σ  

( )0, 0, 1, 2, ....nf x n∗ = =  (18) 

Since the eigenfunctions x(ε) are found from (16) up 
to a multiplier, additional normalization conditions are 
usually introduced such as ( )( )0, 1.x x∗ε =  Relation (18) 
and scaling allow us to determine the expansion coeffi-
cients σ(ε) and, using (16), the eigenfunctions x(n).  

The Schrödinger method has long been known, but 
its application faces a number of problems. That is why, 
to assess the dependence of normal modes on external 
forcing, we have used numerical computing, changing 
the parameters of the problem and calculating eigen-
functions and eigenfrequencies of the operator. 

 
RESULTS 

Consider first the differential rotation of the Sun 
with parameters a=0.5, f=0.8. Table 1 lists e-folding 
times of the fastest growing normal modes at different 
amplitudes of differential rotation anomalies k and dif-
ferent coefficients α1 characterizing the stationary mag-
netic field strength. The axisymmetric differential rota-
tion k=0 is seen to be unstable for the selected parameters 
and increases e-fold for 21.15 rotations in the absence of 
the magnetic field. This confirms the estimates we have 
obtained earlier [Mordvinov et al., 2012, 2013]. We in-
crease the magnetic field strength starting from 
α1=0.0035 (1 G) to α1=35 (10000 G). The magnetic field 
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Table 1 

E-folding times of perturbations of differential rotation with parameters a=0.5, f=0.8 at different amplitudes of anomalies of 
differential rotation and magnetic field strength at the number of harmonics N=13 and T0 =500. 

 α1=0.0 α1=0.0035 α1=0.035 α1=0.35 α1=3.5 α1=35 
k=0 T=21.15 T=22.06 T=24.36 T=39.13 T=5.33 T=0.58 
k=0.001 T=20.41 T=21.21 T=24.56 T=29.9 T=2.32 T=0.23 
k=0.005 T=9.12 T=9.18 T=9.69 T=6.46 T=0.49 T=0.04 
k=0.01 T=4.42 T=4.45 T=4.61 T=2.84 T=0.25 T=0.02 

Table 2 
E-folding times of perturbations of differential rotation with parameters a =0.5, f=0.8 at different amplitudes of anomalies of 

differential rotation and magnetic field strength, T0 =1000, for each value of k: in the top row, for N=13; in the bottom row, for 
N=15. 

 α1=0.0 α1=0.0035 α1=0.035 α1=0.35 α1=3.5 α1=35 

k=0 T=20.71 
T=20.94 

T=21.58 
T=21.85 

T=23.77 
T=26.34 

T=39.63 
T=23.56 

T=5.44 
T=2.99 

T=0.59 
T=0.33 

k=0.001 T=19.99 
T=20.20 

T=20.77 
T=21.06 

T=23.96 
T=25.98 

T=30.08 
T=21.89 

T=2.34 
T=1.66 

T=0.23 
T=0.15 

k=0.005 T=9.04 
T=5.98 

T=9.09 
T=6.02 

T=9.60 
T=6.40 

T=6.46 
T=5.79 

T=0.49 
T=0.38 

T=0.04 
T=0.03 

k=0.01 T=4.41 
T=1.77 

T=4.43 
T=1.78 

T=4.59 
T=1.99 

T=2.84 
T=2.94 

T=0.25 
T=0.19 

T=0.02 
T=0.01 

 
changes the e-folding times. The field of 1, 10, 100 G 
slows down the development of instability, but a fur-
ther 10-fold enhancement of the magnetic field reduces 
the e-folding time about 8 times; and at a field value of 
10000 G, the growth of instabilities accelerates ~70 
times. In all the cases, the amplitude of differential 
rotation anomalies k has a significant effect on the 
growth rate of perturbations. A 10-fold increase in 
amplitude causes the e-folding time to decrease 5–10 
times. A similar dependence of instabilities on the 
magnetic field and the mean flow anomalies persists as 
friction decreases and the number of spherical harmon-
ics in the stream function expansion increases (Table 
2). When choosing the number of harmonics in the 
expansion, we relied on the results obtained in 
[Mordvinov et al., 2013], in which the dependence of 
the growth rates of instabilities with a change in n 
from 5 to 30 without a magnetic field was analyzed. A 
particularly strong dependence of increments of 
growth rate on n was recorded at n>15.  

It can be seen that when a magnetic field is intro-
duced the dependence on the number of harmonics 
persists. 

Figure 2 exemplifies spatial distributions of the 
fastest growing normal modes 

      ( ) ( )0 , , ,Yγ γ
γ

′ψ λ µ = ψ µ λ∑  

( ) ( )0 , ,Yγ γ
γ

′χ λ µ = χ µ λ∑   

at zero amplitude of mean flow anomalies k=0, differ-
ential rotation with parameters a=0.5, f=0.8, and the 
time of Rayleigh damping T0=1000 rotations of the 
Sun. In the stream function expansion, 13 spherical 
harmonics have been taken into account. The distribu-
tions are normalized to maximum values ( )0 ,′ψ λ µ  and 

( )0 , .′χ λ µ  Isolines from –0.9 to +0.9 are plotted. Isolines 
of negative stream functions are blue; and those of positive 
values are red. The spatial distributions of normal modes 
are constructed in two projections — cylindrical (on the 
left) and stereographic (on the right). 

The spatial structures of normal modes are seen to 
differ greatly at different strengths of the mean magnetic 
field. Harmonics with large wave vectors γ generally 
turn out to be the most unstable. Large-scale normal 
modes with small γ are more stable. Of particular inter-
est (see Figure 2) are the axisymmetric normal mode of 
the stream function at α1=0.35 (100 G), (torsional oscil-
lations) (panel a, the fourth distribution from above) and 
the dipole mode of the magnetic stream function at 
α1=3.5 (1000 G) (sector structure of the photospheric 
magnetic field) (panel b, the fifth distribution from 
above). These modes can be compared with observa-
tions. Nonetheless, given the strong dependence of 
normal modes on simulation parameters, it seems prem-
ature to interpret the real large-scale structures of the 
magnetic field and the velocity field in terms of normal 
modes, at least without a case study. 

Examine the differential rotation with parameters 
a=f=0.2. We have shown that the axisymmetric rota-
tion with such parameters is stable without a magnetic 
field [Mordvinov et al., 2012, 2013]. The magnetic 
field and the mean flow anomalies change the situa-
tion. Tables 3, 4 present the results of calculations of 
e-folding times of the most unstable normal modes at 
α1 from 0.0035 to 35 and different amplitudes k of 
mean flow anomalies. In all the cases, the flows be-
come unstable, yet the e-folding times of the perturba-
tion amplitude are longer than those for the differential 
rotation parameters a=0.5, f=0.8. 

Summarize the calculations of normal modes with a 
frozen-in magnetic field. The calculations show that an 
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Figure 2. Spatial distributions of the fastest growing normal modes ( ) ( )0 , ,Yγ γ
γ

′ψ λ µ = ψ µ λ∑  (a); 

( ) ( )0 , ,Yγ γ
γ

′χ λ µ = χ µ λ∑  (b) at different magnetic field strengths α1 =0.0, α1 =0.0035, α1 =0.035, α1 =0.35, α1 =3.5, α1 =35 (from 

top to bottom); Tp is the time of an e-fold increase in the normal mode amplitude  

Table 3 
The same as in Table 1 for the differential rotation parameters a=0.2, f=0.2, and T0 =500. 

 α1=0.0 α1=0.0035 α1=0.035 α1=0.35 α1=3.5 α1=35 
k=0 T=∞ T=5805.80 T=580.58 T=58.05 T=4.86 T=0.58 
k=0.001 T=1782.83 T=1456.64 T=225.03 T=49.31 T=3.2 T=0.26 
k=0.005 T=9.56 T=9.58 T=9.93 T=5.80 T=0.47 T=0.04 
k=0.01 T=3.27 T=3.33 T=4.07 T=2.34 T=0.24 T=0.02 

 
Table 4 

The same as in Table 2 for the differential rotation parameters a=0.2, f=0.2, and T0 =1000, 
for each k value: in the top row, for N=13; in the bottom row, for N=15. 

 α1=0.0 α1=0.0035 α1=0.035 α1=0.35 α1=3.5 α1=35 
k=0 T=∞ 

T=∞ 
T=5926.23 
T=3300.99 

T=592.62 
T=330.09 

T=59.26 
T=33.0 

T=4.89 
T=3.3 

T=0.59 
T=0.33 

k=0.001 T=640.65 
T=17201.1 

T=610.5 
T=948.12 

T=209.66 
T=186.45 

T=49.43 
T=30.74 

T=3.23 
T=2.03 

T=0.27 
T=0.15 

k=0.005 T=9.47 
T=4.81 

T=9.49 
T=4.92 

T=9.83 
T=6.20 

T=5.80 
T=5.87 

T=0.47 
T=0.36 

T=0.04 
T=0.03 

k=0.01 T=3.26 
T=1.54 

T=3.32 
T=1.56 

T=4.06 
T=1.71 

T=2.34 
T=2.68 

T=0.24 
T=0.19 

T=0.02 
T=0.01 
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increase in the amplitude of differential rotation anoma-
lies and an increase in the magnetic field in the range 
1000–10000 G in all cases lead to a rapid growth in 
flow instability. The e-folding time of perturbations is 
reduced by more than an order of magnitude. The in-
crease in the amplitude of differential rotation anoma-
lies is most pronounced in the range k=0.01–0.001. A 
weak magnetic field stabilizes the flow. This supports 
the results of numerical calculations performed in 
[Mordvinov et al., 2019]. The dependence of the insta-
bility growth rate on the amplitude of mean flow anom-
alies yet still turns out to be stronger.  

 
SPATIAL STRUCTURE  
OF NORMAL MODES  
OF NONUNIFORM MEAN FLOW 

To study the dependence of the spatial structure of 
normal modes on external forcing, we employ a simpler 
geostrophic flow model without a magnetic field. Introduc-
ing a magnetic field significantly complicates the problem 
and is not entirely justified since the amount of information 
on large-scale magnetic field structures and its interpreta-
tion are insufficient to compare with the calculation results.  

Our task is to calculate the normal modes and to ana-
lyze them for the mean flow whose main feature is qua-
sistationary formations — an axisymmetric polar cyclonic 
vortex and an anticyclonic vortex in midlatitudes. Such a 
configuration is close to the configuration of flows in 
Earth's stratosphere. In [Mordvinov and Zorkaltseva, 
2022], we drew attention to the fact that axisymmetric 
perturbations resembling torsional oscillations appear 
among the most unstable modes of such flows.  

As in the previous section, we use a simple geo-
strophic model in the calculations  

( ) ( )

( ) ( )
2 2

3

1 2,

,

L
J

t R R
r K f

∂ ψ Ω ∂ψ
= − ψ ∆ψ − −

∂ ∂λ
− ∆ψ − ∆ ∆ψ − ψ

 (19) 

where R is the Earth radius. 
By linearizing the equation, expanding it in spherical 

harmonics, and representing perturbations as normal 
modes, we derive an equation for eigenvalues and ei-
genvectors of a matrix characterizing the interactions of 
normal modes with the mean flow, 

,A ′ ′γγ γ γ′ψ = σ ψ  (20) 

where 

( )

( )1

1 ,

2 1 ,

n
n S

A Y J Y G dS
k

i m r n n

∗
′ ′γγ γ γ

′

′γγ

  = + 
Ω   
′ ′ ′+d − +  

∫   

( ) 2, 1 ,n n nG k k n n F= ∆ψ + ψ = + +   

D/F a L≡  is the Froude number. 
Components of the eigenvectors are the coefficients 

of expansion in spherical harmonics. 
In the previous section, we have used quadratures to 

calculate the double integrals included in the expres-

sions for elements of the matrix A ′γγ . Now we adopt the 
method of interaction coefficients, which is often em-
ployed in numerical simulation of the general atmos-
pheric circulation. To do this, we expand the stream 
function ψ  of mean flow in spherical harmonics 

( ) ( ), ,Y′′ ′′γ γ
′′γ

ψ λ µ = ψ µ λ∑  and substitute 

( )
N

n n n nG k k k Y′′ ′′ ′′γ γ
′′γ

= ∆ψ + ψ = ψ −∑  in the expression 

for the operator. The formula for calculating the A ′γγ  
matrix components takes the form 

( )

( )1

1 ,

2 1

N
n n

n S

k k
A Y J Y Y dS

k

i m r n n

∗′′
′ ′′ ′ ′′γγ γ γ γ γ

′′γ ′

′γγ

  − = ψ +  Ω    
′ ′ ′+d − +  

∑ ∫  (21) 

In this expression, the scalar product 

( ),

2

S

S

Y J Y Y dS

Y Yi Y m Y m Y dS

∗
′ ′′γ γ γ

′′γ γ∗
′ ′′ ′′γ γ γ γ γ

=

∂ ∂ 
= − ∂m ∂m 

∫

∫
 (22) 

is a mathematical expression for the mechanism of nonlin-
ear resonant interaction between three spherical functions 
(triads). Analytical calculations of the interaction coeffi-
cients allow us to obtain rules for selecting non-zero values 
of the coefficients, which significantly simplifies the prob-
lem-solving algorithm. In the calculations, we use the in-
teraction coefficients for N=13 and N=15 of spherical 
harmonics in the expansion, as in the first part of the work. 

We will set the mean flow structure in the form of a 
sum of Gaussians. { }2exp .kpψ ± −−  Here p is the or-
thodromy — the distance between the center of the vor-
tex and an arbitrary point on the sphere; k is the coeffi-
cient characterizing the width of the Gaussian. In radi-
ans, the width of the Gaussian is related to the coeffi-
cient k by the ratio 1/ 2 .k∆ =  

Calculations have shown that with the selected mod-
eling parameters all normal modes of the polar cyclone 
at a Gaussian width >50° (>25° from the pole) are 
damped; and at a width >77° (>39° from the pole), two 
modes are the least damped — axisymmetric (n=6, 
m=0) and dipole (n=1, m=–1). Spectra of the least 
damped modes and their spatial structure in stereo-
graphic and cylindrical projections at a cyclone width of 
77° are depicted in Figure 3. Thus, we can assume that 
the axisymmetric torsional oscillations observed in the 
atmosphere are the least damped normal modes of the 
polar cyclonic vortex. 

The axisymmetric oscillations also turn out to be quite 
stable when numerically calculated. Figure 4, a presents 
the results of calculation of the evolution of an axisymmet-
ric normal mode over 28 days with numerical extrapolation 
at a time step of 0.01 day. The normal mode was taken as 
initial conditions. At each time step, the disturbance inter 
acted with the polar cyclone. Panel b shows, for compari-
son, the results of calculation of the evolution of the dipole  
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Figure 3. Spatial structure of the least damped normal modes of the polar cyclone in cylindrical (left) and stereographic (cen-

ter) projections. The time T determines the e-folding time of exponential damping of the mode, T1 is the period of oscillation of 
the mode, the sign before T1 is the direction of the transfer of the mode to the east (+) or to the west (–). In relative units (from –
0.9 to +0.9), stream function isolines are plotted: blue isolines correspond to negative values; red, to positive ones. On the right is 
the spectral composition of normal mode: the X-axis is the degree of the spherical function n; the Y-axis, the sum n+m, where m 
is the zonal wavenumber. The straight blue line indicates axisymmetric harmonics at m=0 
 
mode over the same time period. It is clearly seen how 
quickly the dipole evolved and a characteristic spiral struc-
ture was formed instead. Statistical processing of observa-
tional data over long time periods does reveal such struc-
tures. Unfortunately, the oscillation period (6.28 days) for 
axisymmetric and dipole modes also appears to be shorter 
than both the torsional oscillation period (~15 days) and 
the oscillation period of two-dimensional Rossby waves 
[Branstator, Held, 1995]. The reason for the differences 
might be the too simple geometry of the mean flow and/or 

the modeling parameters adopted in calculations. 
Let us see how normal modes will change when an an-

ticyclone appears at midlatitudes. Figure 5 presents the 
results of calculations of normal modes for the flow 
caused by the superposition of a polar cyclonic vortex 
and an anticyclonic vortex centered at 60° N. The stream 
function was given by the sum of two Gaussians 

{ } { }2 20.5exp 0.35 0.2 exp .kp l klp lψ = − − ⋅ −  
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Figure 4. Results of numerical time extrapolation of axisymmetric (a) and dipole (b) normal modes. The extrapolation time 

interval is 28 days, the time step for numerical calculation is 0.01 day. The time interval between frames (from left to right and 
from top to bottom) is 4 days. In relative units from –0.9 to +0.9 in the stereographic projection, isolines of the stream function of 
normal modes are mapped 

 
The l parameter varied from 0 to 5 (from top to bottom). 
As l increased from 1 to 5, the amplitude of the anticy-
clonic vortex increased five times, while the width of 
the anticyclone decreased. Both contributed to the in-
creasing instability of the flow. Figure 5, d illustrates 
distributions of stream functions ψ . Figure 5, a, b 
shows modes with the largest increments in cylindrical 
and stereographic projections; Figure 5, c, spectra of 
normal modes. 

It can be seen how the structure of the fastest growing 
modes becomes more complex with an increase in ampli-
tude and a decrease in the width of the anticyclone. For the 
polar cyclone, the axisymmetric mode is the least damped. 
In the most unstable flow configuration with a strong anti-
cyclone, the fastest growing normal mode is the sum of 
three spherical harmonics (see Figure 5, b, bottom panel). 

Figure 6 exhibits spectra of normal modes: a — 
for N=13 (corresponding to Figure 5); b — for N =15. 

Colors of the isolines change from dark blue to light 

blue with enhanced mean flow instability, i.e. with in-
creasing anticyclone amplitude (from top to bottom in 
Figure 5). At N=13, the spectrum of rapidly growing 
modes is limited to degrees of harmonics 5 and 7. When 
the resolution is increased to N=15, spherical functions 
with degrees 3 and 4 appear in the spectrum. At the 
same time, the growth rates of the most unstable har-
monics become lower, i.e. the flow turns out to be more 
stable. 

 
CONCLUSION 

In the first part of the work, we have presented the re-
sults of numerical experiments with the magnetohydro-
dynamic model of shallow water, which were aimed at 
assessing the degree of the magnetic field effect on the 
development of instabilities of a stationary flow with a 
frozen-in magnetic field. The magnetic stream function 
was assumed to be proportional to the stream function 

132 



V.I. Mordvinov, E.V. Devyatova, V.M. Tomozov 

of mean flow, which is the sum of the stream function 
of differential rotation and spherical harmonic of the 
sixth degree. The friction force was provided by the 
Rayleigh friction and the hyperviscosity of the third 
degree. In the assumed approximations, we have calcu-
lated normal modes of mean flow with a frozen-in mag-
netic field. In the stream function expansion, we have 
taken into account 13 and 15 spherical harmonics. Nor-
mal mode computing has confirmed our earlier result, 
obtained in a numerical experiment, that effects of weak 
and strong magnetic fields on differential rotation insta-
bility differ. A weak magnetic field stabilizes the devel-
opment of instability, while a strong one, on the contra-
ry, enhances it. Resulting dependences of the instability 
increment on the mean magnetic field strength are con-
sistent with the statements about the stabilizing role of 

the magnetic field [Mishin, Tomozov, 2014] and with 
the conclusions that instabilities are enhanced when a 
magnetic field is included in model calculations [Cally 
et al., 2003; Dikpati, Gilman, 2001; Gilman et al., 2007; 
Gilman, Fox, 1997]. Azimuthal differential rotation in-
homogeneities in all the cases contributed to the devel-
opment of instabilities.  

In the second part of the work, the object of the study 
was the spatial structure of normal modes. We explored the 
possibility of explaining torsional oscillations in the terres-
trial and solar atmospheres by normal modes. To simplify 
the calculations, we ignored the magnetic field effect on 
the flow, i.e. the model corresponded more closely to the 
conditions of Earth's atmosphere. 

 

 
Figure 5. Spatial structure of normal modes with the largest increments in cylindrical (a) and stereographic (b) projec-

tions, spectra of normal modes (c), and mean-flow configuration (d) at different anticyclone parameters 
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Figure 6. Spectra of normal modes with the largest increments for the polar cyclone + anticyclone flow, on the left — for N=13 

(as in Figure 5), on the right — for N=15. Amplitudes of the anticyclone varied from minimum to maximum (dark blue and light 
blue isolines)  
 
The main component of the mean flow was an axisymmet-
ric polar vortex. Such a flow configuration is typical for 
Earth's atmosphere and, probably, for the Sun's atmos-
phere. Calculations have shown that the large-scale cyclon-
ic vortex over the pole is stable, which was to be expected, 
and two modes were the least damped — the axisymmetric 
mode resembling torsional oscillations and the horizontal 
dipole mode. Large-scale mean flow anomalies (anticy-
clonic vortex at midlatitudes of the Northern Hemisphere) 
disrupted the stability of the polar vortex. The axisymmet-
ric and dipole modes remained weakly damped, but rapidly 
growing normal modes appeared, which generally have a 
more complex spatial structure. 

The main results are of a more qualitative nature since 
the calculations of the increments of normal modes and, 
moreover, their spatial structure depend very strongly on 
the adopted assumptions, the structure of the model, con-
figurations of the mean flow and the mean magnetic field. 
To make quantitative conclusions about the structure of 
normal modes and growth increments of normal modes, 
all these parameters should be clarified.  

The work was financially supported by the Ministry of 
Science and Higher Education of the Russian Federation 
(Subsidy No. 075-GZ/Ts3569/278). 

 
REFERENCES 

Altrock R., Howe R., Ulrich R. Solar torsional oscillations 
and their relationship to coronal activity. American Astronom-
ical Society, SPD Meeting, BAAS 38. 2006, vol. 38, p. 258. 
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode= 
2006SPD....37.3203A.  

Branstator G., Held I. Westward Propagating Normal 
modes in the presence of stationary background waves. J. 
Atmos. Sci. 1995, vol. 52, pp. 247–262. 

Bumba V. Large-scale magnetic fields on the Sun. Solar 
Activity Problems. Мoscow, Mir Publ., 1979, pp. 50–74. (In 
Russian).  

Bumba V., Howard R. Large-scale distribution of solar 
magnetic fields. Astrophys. J. 1965, vol. 141, no. 4, pp. 1502–
1512. 

Bumba V., Makarov V. Background magnetic fields on 
the Sun. Solar Magnetic Fields. I. Corona: Proc. ХIII Consul-
tative Conference on Solar Physics. Novosibirsk, Nauka Publ., 
1989, vol. 1, pp. 51–71. (In Russian). 

Cally P.S., Dikpati M., Gilman P.A. Three-dimensional 
magnetoshear instabilities in the solar tachocline. Monthly 
Notices of the Royal Astron. Soc. Papers. 2003, vol. 339, iss. 4, 
pp. 957–972. 

Danilov S.D., Gurarii D. Quasi two-dimensional turbu-
lence. Physics-Uspekhi. 2000, vol. 170, iss. 9, pp. 921–969. 

Dikpati M., Gilman P.A. Analysis of hydrodynamic stability 
of solar tachocline latitudinal differential rotation using a shallow-
water model. Astrophys. J. Papers. 2001, vol. 551, pp. 536–564. 
DOI: 10.1086/320080. 

Dikpati M., Gilman P.A. A shallow-water theory for the 
Sun’s active longitudes. Astrophys. J. 2005, vol. 635, iss. 2, 
pp. L193–L196. 

Dymnikov V., Filatov A. Sustainability of large-scale at-
mospheric processes. Computing Mathematics Department AS 
USSR. Мoscow, 1988, pp.1–140. (In Russian). 

Dymnikov V., Skiba Yu. Barotropic instability of zonal 
asymmetric atmospheric flows. Computing Processes and 
Systems. Iss. 4. Moscow, Nauka Publ., 1986, pp. 63–104. (In 
Russian). 

Fournier D., Gizon L., Hyest L. Viscous inertial modes on 
a differentially rotating sphere: Comparison with solar obser-
vations. Astron. Astrophys. 2022, vol. 664, pp. 1–16. DOI: 
10.1051/0004-6361/202243473. 

Gill А. Dynamics of atmosphere and ocean. In 2 vol. 
Мoscow, Mir Publ., 1986, vol. 2, 415 p. 

Gilman P.A. Stability of baroclinic flows in a zonal 
magnetic field. Part 1–3. J. Atmos. Sci. 1967, vol. 24, no. 2, 
pp. 101–143. 

Gilman P.A., Fox P.A. Joint instability of latitudinal differ-
ential rotation and toroidal magnetic fields below the solar con-
vection zone. Astrophys. J. 1997, vol. 484, no. 1, pp. 439–454. 

Gilman P.A., Dikpati M., Miesch M.S. Global MHD in-
stabilities in a three-dimensional Thin-Shell Model of solar 
tachocline. Astrophys. J. Suppl. Ser. Papers. 2007, vol. 170, 
pp. 203–227. DOI: 10.1086/512016. 

Kitchatinov L.L., Rüdiger G. Stability of latitudinal differ-
ential rotation in stars. Astron. Astrophys. 2009, vol. 504, no. 
2, pp. 303–307. 

134 

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=%0b2006SPD....37.3203A
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=%0b2006SPD....37.3203A
https://doi.org/10.1086/320080
https://doi.org/10.1051/0004-6361/202243473
https://doi.org/10.1086/512016


V.I. Mordvinov, E.V. Devyatova, V.M. Tomozov 

Large-Scale Dynamic Processes in the Atmosphere. 
Мoscow, Mir Publ., 1988, 430 p. (In Russian). 

Marchuk G., Agoshkov V., Shutyaev V. Adjoint Equa-
tions and Perturbation Algorithms in Applied Problems. Com-
puting Processes and Systems. Мoscow, Nauka Publ., 1986, 
272, pp. 5–62. (In Russian). 

Miesch M.S. Large-scale dynamics of the convection zone 
and tachocline. Living Reviews in Solar Physics. 2005. Vol. 2, 
no. 1. P. 1–139. 

Mishin V., Tomozov V. Manifestations of Kelvin-
Helmholtz instability in the solar atmosphere, solar wind and 
Earth's magnetosphere. Solar-Terr. Phys. 2014, iss. 25, pp. 
10–20. (In Russian). 

Mordvinov V.I., Zorkaltseva O.S. Normal Mode as a 
Cause of Large-Scale Variations in the Troposphere and Strat-
osphere. Izvestiya, Atmospheric and Oceanic Phys. 2022, vol. 
58, no. 2, pp. 140–149.  

Mordvinov V., Devyatova E., Tomozov V. Hydrodynamic 
instabilities in a tachocline due to layer thickness variations. 
Solar-Terr. Phys. 2012, iss. 20, pp. 3–8. (In Russian). 

Mordvinov V., Devyatova E., Tomozov V. Hydrodynamic 
instabilities in the tachocline due to layer thickness variations 
and mean flow inhomogeneities. Solar-Terr. Phys. 2013, iss. 
23, pp. 3–12. (In Russian). 

Mordvinov V., Latysheva I. General circulation theory of 
the atmosphere, variability of large-scale motions. Irkutsk, 
izdatelstvo IGU, 2013, 193 p. (In Russian). 

 
 
 

Mordvinov V.I, Olemskoy S.V., Latyshev S.V. Influence of 
mean magnetic field and magnetic field of the velocity disturb-
ances on the development of hydrodynamic instabilities in tacho-
cline. Proc. SPIE 11208, 25th International Symposium on Atmos-
pheric and Ocean Optics: Atmospheric Physics, 1120803 (18 
December 2019). 2019. DOI: 10.1117/12.2538285. 

Tikhomolov E.M. Large-scale vortical flows and penetra-
tive convection in the Sun. Nuclear Physics A. 2005, vol. 758, 
no. 1. pp. 709–712. 

Zorkaltseva O.S., Mordvinov V.I., Devyatova E.V., Dom-
brovskaya N.S. Method For Calculating Torsional Oscillations 
in Earth’s Atmosphere from NCEP/NCAR, MERRA-2, 
ECMWF ERA-40, AND ERA-INTERIM. Solar-Terr. Phys. 
2019, vol. 5, iss. 1, pp. 69–76. DOI: 10.12737/stp51201910.  

 
Original Russian version: Mordvinov V.I., Devyatova E.V., To-

mozov V.M., published in Solnechno-zemnaya fizika. 2023. Vol. 9. 
Iss. 4. P. 134–146.  DOI: 10.12737/szf-94202315. © 2023 INFRA-M 
Academic Publishing House (Nauchno-Izdatelskii Tsentr INFRA-M) 

How to cite this article 
Mordvinov V.I., Devyatova E.V., Tomozov V.M. Influence of the 

magnetic field and the mean flow configuration on spatial structure 
and growth rate of normal modes. Solar-Terrestrial Physics. 2023. Vol. 9. 
Iss. 4. P. 123–135. DOI: 10.12737/stp-94202315. 

 
 
 
 

 

135 

https://doi.org/10.1117/12.2538285
https://doi.org/10.12737/szf51201910
https://doi.org/10.12737/szf-94202315
https://doi.org/10.12737/stp-94202315

