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Abstract. Ionosphere has an important impact on 

the quality of radio communication, radar, and global 

positioning. One of the essential characteristics describ-

ing the state of the ionosphere is its critical frequency 

foF2. Its prediction provides effective modes of opera-

tion of technical radio equipment as well as enables 

calculation of the corrections needed to improve the 

accuracy of its functioning. Different physical and em-

pirical models are generally used for foF2 prediction. 

This paper proposes an empirical prediction technique 

based on machine learning methods and observational 

history. It relies on a regression approach to the predic-

tion based on the known daily quasi-periodicity of iono-

spheric parameters related to solar illumination. Algo-

rithmically, this approach is implemented in the form of 

convolutional neural networks with two-dimensional 

convolution. The input data for the analysis is presented 

as two-dimensional solar time — date matrices. The 

model was trained on data from the mid-latitude iono-

sonde in Irkutsk (RF) and tested using data from several 

mid-latitude ionosondes: Arti (RF), Warsaw (Poland), 

Mohe (China). It is shown that the main contribution to 

the prediction value of foF2 is made by the data on the 

nearest few days before the prediction; the contribution 

of the remaining days strongly decreases. This model 

has the following forecast quality metrics (Pearson cor-

relation coefficient 0.928, root mean square error 0.598 

MHz, mean absolute error in percent 10.45 %, coeffi-

cient of determination 0.861) and can be applied to foF2 

forecast in middle latitudes. 

Keywords: ionosphere, machine learning, neural 

networks, foF2. 

 

 

 

INTRODUCTION 

The ionosphere is a dynamic medium that, on the 

one hand, is affected by solar radiation, processes in the 

underlying atmosphere and the overlying magneto-

sphere and plasmosphere, and, on the other hand, has a 

certain inertia associated with ionization and recombina-

tion of constituent particles and with mass transfer. 

Thus, when predicting ionospheric characteristics, it is 

important to take into account both local dependences 

related to the ionosphere inertia and quasi-periodic ones 

associated with diurnal variation of solar radiation. 

Therefore, to predict ionospheric characteristics, it is 

effective to use models considering the state of the ion-

osphere in the past, as well as the history of parameters 

characterizing the main impact on the ionosphere from 

above — solar and magnetic activity. 
Recently, when solving complex problems with a 

large number of unknowns, machine learning methods 
have often been adopted. These methods are a synthesis 
of various mathematical methods — from the approxi-
mation theory to the optimal control theory. Today, the 
term "machine learning" generalizes widely-known 
simple methods such as various regression techniques 
and more complex methods of classical learning (super-

vised and unsupervised) and deep learning, using com-
plex end-to-end neural networks, reinforcement learn-
ing, etc. [Goodfellow et al., 2016]. Recently, machine 
learning in one form or another has often been em-
ployed to address geophysical problems [Yu, Ma, 2021] 
and problems of forecasting the state of the ionosphere. 
Sivavaraprasad et al. [2022] present a nonlinear auto-
regressive neural network with external input that pre-
dicts the total electron content (TEC) in the ionosphere. 
As input data for this model, TEC, geomagnetic index 
Ap values, solar activity data, time of day, geographic 
coordinates, etc. are utilized. 

The critical frequency foF2 is one of the main iono-
spheric characteristics used for solving applied prob-
lems. In vertical sounding problems, this is the maxi-
mum frequency of an ordinary polarization radio wave 
reflected from the ionosphere [Hargreaves, 1982]. For 
oblique radio wave propagation, foF2 can help to esti-
mate the maximum frequency applicable to radio com-
munication. For global positioning with global naviga-
tion satellite systems, foF2 has an effect on the iono-
spheric correction required to improve positioning accu-
racy. Diurnal variation in foF2 as recorded by the ISTP 
SB RAS mid-latitude ionosonde (Irkutsk, 52°16' N, 
104°17' E) is shown in Figure 1. There is a significant  
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Figure 1. Diurnal variation in the critical frequency foF2, rec-

orded by a mid-latitude ionosonde (Irkutsk, 52°16' N, 104°17' E), 

as a function of local solar time (LST) 

daily quasi-periodic component related to solar illumi-

nation: maximum values are observed during the day-

time; minimum ones, at night. 

Recently, to predict foF2, machine learning models 

such as recurrent neural networks [Barkhatov et al., 2005] 

and convolutional neural networks [Boulch et al., 2018] 

have been used. The empirical IRI (International Reference 

Ionosphere) model is also widely known; it is designed to 

estimate and predict ionospheric parameters, including foF2 

[Bilitza et al., 2011]. The IRI model has two modifications 

for predicting foF2: one of them was developed by the In-

ternational Radio Advisory Committee (CCIR model) 

[CCIR, 1967]; the other, by the International Union of 

Radio Science (URSI) [Rush et al., 1989]. The IRI model 

is available as the FORTRAN source code [http://iri mod-

el.org/IRI-2016]. It is regularly updated; the latest version 

is IRI-2016. To refine the IRI model, we can make use of 

the NECTAR error compensation technique, which em-

ploys a recurrent neural network, in particular for interpola-

tion of time-series and spatial data [Galkin et al. 2015]. 

Nowadays, interpretability of neural networks is an 

important line of research that aims not only at obtain-

ing a result, but also at explaining why and how it fol-

lows from initial data [Lundberg, Lee, 2017]. Neural 

networks are usually difficult to interpret and represent 

a black box for the end user. It is usually difficult to 

qualitatively figure out what effect certain changes in 

input parameters have on such a trained neural network. 

In this work, we have built a convolutional neural net-

work capable of predicting foF2 one day in advance 

from the data history and have qualitatively interpreted 

its coefficients in terms of regression analysis. 
 

INITIAL DATA 

FOR NETWORK TRAINING 

As initial data for the analysis we have utilized foF2 

time-series data obtained through manual processing of 

ionograms from the mid-latitude Irkutsk digisonde DPS-4 

[https://ckp-rf.ru/catalog/ckp/3056], as well as the indices of 

geomagnetic disturbance Dst and solar emission intensity 

F10.7 at a wavelength of 10.7 cm over the period from 

2009 to 2016 from the OMNI database 

[https://omniweb.gsfc.nasa.gov/form/dx1.html]. The DPS-

4 digisonde, located in Irkutsk, consists of an analog-to-

digital transceiver, four receiving antennas, and a "crossed 

vertical rhombus" transmitting antenna system. The 

digisonde can simultaneously record in automatic mode 

such radio signal parameters as amplitude, frequency, 

height (range), arrival angles, phase, polarization, and 

Doppler shift of radio wave frequency. This set of parame-

ters, digitally coordinated processing of received signals, 

coherent Doppler integration, as well as effective algo-

rithms and programs for automatic and semi-automatic 

data processing before obtaining geophysical parameters 

significantly distinguish the DPS-4 digisonde from iono-

sondes using a continuous signal with linear frequency 

modulation [Smirnov, Stepanov, 2004; Ratovsky et al., 

2004]. Automatic and semi-automatic selection and pro-

cessing of tracks on ionograms, necessary for obtaining 

geophysical parameters such as foF2, have been imple-

mented through the SAO-Explorer software package [Ra-

tovsky et al., 2004]. 

All data we use is reduced to 1 hr time resolution. 

Observations of foF2 have specific gaps, where 1 hr gaps 

account for ~67 %; 2 hr gaps, ~15 % of all gaps. There 

are also longer gaps, the largest, 4120 hr, is in the train-

ing dataset. In total, the percentage of missing values is 

~12 % of the entire dataset. We have used linear inter-

polation to fill the missing data. The reduction to 1 hr 

time resolution was made as follows: 

 for foF2 and Dst having a time resolution higher 

than 1 hr (15 min and 1 min respectively), we reduced 

the data to the required time resolution; 

 for F10.7 having a time resolution of 1 day, dai-

ly data was interpolated by a smooth quadratic curve. 

One of the main methods of validating machine 

learning models is to divide initial data into three dis-

joint datasets — training, validation, and test. The first 

is employed to train the model and determine its param-

eters; the second, to control the quality of the model 

during training; the third, to finally assess the quality 

and adequacy of the trained model, using an independ-

ent dataset. Methods of dividing initial data into train-

ing, validation, and test datasets differ and depend on 

the characteristics of the data under study. In this work, 

we apply forecast models of two types: initial and final, 

which differ in architecture. 

To train initial models, we have divided data into 

two datasets — training and validation — 80 and 20 % 

respectively. 

To train the final model using the results of pro-

cessing of the initial models, we have separated the data 

into three datasets — training, validation, and test — 60, 

20, and 20 % respectively. 

The main mechanism for the formation of the iono-

sphere is ionization of the atmosphere by solar radia-

tion. The ionospheric parameters are therefore charac-

terized by quasi-periodic variations associated with the 

duration of the main 11-year solar cycle and the diurnal 

variation in illumination. Validating the adequacy of the 

constructed model requires it to be effective for differ-

ent solar cycle phases. We have therefore divided the 

data into training and validation datasets for the initial 

model according to the phase of the 11-year solar cycle: 

January 1, 2009 – April 3, 2015 — training dataset; 

April 3, 2015 – December 31, 2016 — validation dataset. 

For processing, the training and validation datasets 

http://irimodel.org/IRI-2016
http://irimodel.org/IRI-2016
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were standardized and transformed from a vector-valued 

3D time function (foF2, F10.7, Dst with 1 hr time reso-

lution) to a sequence of 90×24 matrices for each of the 

parameters (90 days before the current moment, 24 

hours relative to the current hour) characterizing values 

of the corresponding parameters for the previous three 

months. The sequence of matrices was constructed so 

that each hour of each day of measurements corre-

sponded to its own three matrices. Twenty four foF2 

values following the current moment were target to be 

predicted by the three matrices (foF2, F10.7, Dst) corre-

sponding to the current moment. 

The method of forming this dataset is as follows. 

Stage 1. The entire training dataset is standardized 

(scaled) by types of foF2, F10.7, Dst data. The scaled 

data z(t) of each type is obtained from the initial one x(t) 

as follows : 

     / ,z t x t s   (1) 

where µ is the average value of the training dataset x(t); 

s is the standard deviation of the training dataset x(t). 

Stage 2. For the three time series of foF2, F10.7, Dst for 

each hour, we take a dataset of 2160 hour values preceding 

this hour, including this hour. As target values for training 

the model, we choose 24 foF2 values following the given 

hour. Each dataset of 2160 values is transformed into a 2D 

90×24 matrix, where each row represents a day from 0 to 

89; each column, an hour from 0 to 23. 

Stage 3. For training, we generate a 4D 

65736×90×24×3 data feature matrix and a target 

65736×24 matrix, which contains daily foF2 sets, in oth-

er words 65736 (the number of hours in the complete 

dataset) 3D 90×24×3 blocks and 65736 vectors 24 long 

(the number of forecast hours after the current hour). 

The generated data is divided into two datasets contain-

ing 52608 (training) and 13128 (validation) values. The 

fourth dimension of the data feature matrix has a dimen-

sion of 3 and is responsible for foF2, F10.7, Dst. 

Figure 2 exemplifies the standardized data on 

foF2, F10.7, Dst for the time interval January 2, 2009, 

00:00 LST — April 1, 2009, 23:00 LST, correspond-

ing to April 1, 2009, 23:00 LST in the multidimen-

sional dataset (after Stage 3). Along the vertical axis 

are days; along the horizontal axis are hours. The 

diurnal variation in foF2, associated with the level of illu-

mination, is clearly defined — to the local day correspond 

high values of foF2; to the local night, low values. 

 

ARCHITECTURE OF  

THE NEURAL NETWORK, 

ITS TRAINING AND PROPERTIES 

The basic assumptions underlying the neural net-

work are as follows: 

 foF2 is determined from a linear combination of 

the preceding foF2, Dst, and F10.7 values with unknown 

weight coefficients; 

 the weight coefficients may differ for different 

current moments of observations, but depend only on 

the shift from the local time of the current moment. 

These assumptions are fulfilled in the convolutional 

neural network shown in Figure 3. 

The initial network consists of three independent 

parallel convolution layers (L.I) (for each of the input 

parameters of foF2, Dst, F10.7), the results of passing 

through which are combined (L.II) further into a 

90×24×3 matrix. The resulting matrices are flattened 

(converted into a 6480 vector) (L.III) and fed to the in-

put of the decision layer (L.IV) — the single-layer neu-

ral network with a linear activation function, most often 

used in forecasting problems and performing a linear 

combination function of outputs of convolution layers 

(see Figure 3). The convolution layers L.I have been 

added to improve the quality of filtering of random out-

liers and for additional adaptive smoothing of input data 

obtained with different time resolutions. They have a 

convolution kernel with a size of 30 days×1 hr.  

Such a network architecture is equivalent to a linear 

regression problem with a very large number of coeffi-

cients found by machine learning methods. 

When training the network, we have applied an ana-

logue of the gradient descent method — the adaptive 

momentum method (Adam), which increases the learn-

ing rate [Kingma, Va, 2014]. As a loss function, we 

utilized MSE — the average squared difference between 

the predicted values and the real one. This loss function 

is traditional for solving numerical value prediction prob-

lems. The neural network code is implemented in Python, 

using the TensorFlow library [Abadi et al., 2016]. 

 

Figure 2. Initial standardized data on foF2, F10.7, Dst 

from January 2, 2009, 00:00 LST to April 1, 2009, 23:00 LST 

(used for training the neural network), corresponding to the 

measurement time of April 1, 2009, 23:00 LST. For this 

measurement time, the time axis corresponds to local solar 

time 

 

Figure 3. Neural network architecture 
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After training the neural network, we analyzed its 

coefficients to simplify the architecture of this rather 

general neural network. In order to simplify the archi-

tecture, we have addressed two main issues: 1) whether 

the network coefficients depend on the local time of the 

current moment or they can be considered stationary in 

the first approximation and thereby allow us to simplify 

the neural network; 2) what is the structure of the neural 

network coefficients and the contribution of the ob-

served data for the previous days/hours to the predicted 

foF2 value? 

The first step in training was to increase the accuracy 

of the prediction by the network not only by selecting the 

neural network coefficients, but also by applying several 

networks of identical architecture trained independently, 

using different datasets (ensemble methods). The simplest 

ensemble method that in some cases can improve the 

prediction accuracy is bagging [Breiman, 1994; Opitz, 

Maclin, 1999], which consists in independent training of 

an ensemble of networks and superposition of the results 

predicted by each network using a fixed algorithm, usual-

ly by averaging. 

Models for subsequent bagging have been trained as 

follows. 

As a validation dataset we utilized 20 % of the da-

taset at its end. Each of the 200 models was trained us-

ing 80 % of data randomly selected from the remaining 

part. This yielded 200 models, trained using different 

datasets, with various weight coefficients. 

Since each network is linear in our case, the bagging 

(averaging the results of 200 neural networks) is equiva-

lent to averaging of the neural network coefficients cor-

rected for possible inversion of the result by an output 

layer, and within the framework of bagging allows us to 

expect an increase in the prediction accuracy. On the 

other hand, the physical meaning of the averaged neural 

network coefficients is the contribution of certain previ-

ous foF2, Dst, F10.7 data to the predicted foF2 value. 

From a qualitative point of view, averaging these coef-

ficients over an ensemble of networks will reduce their 

variations associated with learning inaccuracies or noise 

in the initial data, and thus will allow us to more accu-

rately determine the contribution of previous data. To 

study the effect of the number of averages on the predic-

tion accuracy, we have analyzed ensembles containing 1 

(without bagging), 10, 30, 100, and 200 models. 

To implement bagging, the output neuron coeffi-

cients are averaged taking into account possible inver-

sion by the output layer according to the following algo-

rithm: 

 in a cycle for each network of the ensemble on the 

basis of the day closest to the moment of observation, we 

find the sign of the decision coefficient for each hour: –1 

if the weight value is negative; 1 if it is positive; 

 at –1, the network coefficients corresponding to 

this hour are inverted (Figure 4, a); 

 the final coefficient of the final matrix of coeffi-

cients is obtained by averaging this coefficient over the 

ensemble of trained networks. 

The algorithm described above implements the fol-

lowing transformations (using the processing coeffi-

cients responsible for foF2 as an example) of the deci-

sion layer: 

  , , , , 0,1

1
, ,

Nl l l

i j i j k i kk
W INV w w

N 
   (2) 

where k is the number of the network in the ensemble; i, 

j are the hours and days of delay from –23 to 0 and from 

0 to 89 respectively; l is the number of the output neu-

ron from +1 to +24, each responsible for the prediction 

of foF2 for the lth hour of 24 forecast hours; N is the 

number of trained models in the processed ensemble; 

 , , , 0,,l l

i j k i kINV w w  is the function of conditional inver-

sion depending on the sign of the multiplicative coeffi-

cient; ,

l

i jW  is the matrix of output neuron coefficients, 

averaged within the ensemble of models, responsible for 

measuring foF2; , ,

l

i j kw is the initial matrix of output 

neuron coefficients responsible for foF2 for one (k-th) 

model. The weight inverting function is as follows: 

  0

0

0

, if 0
, ,

, if 0

w w
INV w w

w w

 
  

  
 (3) 

where w is a weight coefficient; w0 is a weight coeffi-

cient on the day closest to the moment of observation 

with the number of neuron, the number of the network 

of the ensemble, and the hour number of this coefficient 

are the same as in w. The "+" sign in front of the output 

neuron number is used to emphasize that the neuron 

outputs a predicted foF2 value. 

In the initial neural network, each output neuron is 

responsible for the corresponding forecast hour after the 

moment of observation. Number output neurons from 

+1 to +24. The moment of observation stands for the 

moment of time starting from which we want to get a 

forecast for the next 24 hours. The relationship between 

the numbering of output neurons, the predicted hour and 

the moment of observation is shown in Figure 4, b. 

Before obtaining the final ensemble averaged forecast 

described by Formulas (2), (3), we have trained the neces-

sary number of models (see the architecture in Figure 3) 

and have analyzed the dependence of the forecast results 

on their number (1, 10, 30, 100, and 200 models). 

Consider further calculations using the ensemble of 

200 models as an example. We have independently 

trained 200 models. For each of the three input parame-

ters of the initial neural network (foF2, F10.7, Dst), we 

have obtained 24 90×24 coefficient matrices corre-

sponding to the forecast hours after the moment of ob-

servation. These matrices resulted from averaging of the 

corresponding matrices in each of the 200 models ac-

cording to Formulas (2), (3). Call these matrices aver-

aged neurons. Figure 5 shows the coefficients of the 

neuron responsible for the +12th forecast hour relative 

to the moment of observation according to the data on 

foF2 measured at the –12th (a) and –18th (b) hours rela-

tive to the moment of observation. Along the horizontal 

axis is the delay before the moment of observation (in 

days); along the vertical axis is the weight coefficient. 

The scheme for obtaining these coefficients is given in 

Figure 6, a. From Figure 5 we can infer that foF2 for +12th   
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Figure 4. Scheme for averaging weight coefficients within an 

ensemble of trained models for one of the 24 output neurons (a) 

and a neural network model prediction scheme (b) 

 

Figure 5. Coefficients of a neuron responsible for the 

+12th forecast hour after the moment of observation. The 

coefficients correspond to the –12th (a) and –18th (b) observa-

tion hours before the moment of observations during the pre-

ceding days 

 

Figure 6. Identification of neuron coefficients correspond-

ing to processing of foF2 observations at the –18th and –12th 

hours before the moment of observations, during the preceding 

days for the +12th forecast hour (a); scheme for obtaining re-

sponse coefficients responsible for the influence of the previous 

hour, –29 hours from the forecast hour (b); median matrix for 

the preceding hours, from –36 to –13 hours from the forecast 

hour (response matrix θ for foF2) (c) 

 

forecast hour relative to the moment of observation is 

more strongly affected by the data, obtained on the pre-

ceding days, responsible for the –12th hour relative to 

the moment of observation, than the data, collected on 

the preceding days, responsible for the –18th hour rela-

tive to the moment of observation because the corre-

sponding weight coefficients are on average higher. 

This means that the main contribution to the predicted 

foF2 value for the forecast hour is made by observations 

shifted from it by 24 hrs back on the days of previous 

observations. 

When analyzing the coefficients of individual neurons 

responsible for the forecast hours, we observed that the 

main contribution to the predicted foF2 value is made by 

observations during the previous hour, –24 hours from 
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the forecast hour, as well as during the adjacent hours on 

the days of previous observations. 

Analysis of all the 24 forecast hours showed a simi-
lar picture. 

Thus, the values in the matrix of coefficients shift 
depending on the neuron number (forecast hour) and 
have a maximum at the corresponding hour. Thus, when 
switching to the time reference system associated with 
the forecast hour, these functions will not depend on it. 
It is therefore possible for the analysis to transform all 
the matrix coefficients to a time reference system relat-
ed not to the local time of the observation moment, but 
to the forecast hour (shifted matrices). For the reference 
level of the shift, we take the –24 hour shift from the 
forecast hour. Accordingly, assume that the interval of 
adjacent hours is from –36 to –13 from the forecast hour. 

The independence of the shape of these shifted ma-
trices from the forecast hour we have demonstrated al-
lows us to average the matrices over an ensemble com-
posed of 24 shifted matrices, each corresponding to its 
own forecast hour. 

Figure 6, b illustrates the formation of median coef-
ficients in columns for the –29 hour shift from the fore-
cast hour, each cell of a new matrix is a median value of 
corresponding cells of 24 initial shifted matrices. 

To confirm the weak dependence of the shifted ma-
trix coefficients on the forecast hour, we demonstrate 
what the coefficients used to calculate the median look 
like. Figure 7 displays weight coefficients of the shifted 
matrices (for different forecast hours) for foF2, corre-
sponding to –29 hours (a) and –24 hours (b) from the 
forecast hour during previous days. Colors of the curves 
correspond to different forecast hours. 

 

Figure 7. Weight coefficients of shifted matrices of coef-

ficients corresponding to –29 hours from the forecast hour, 

depending on the number of the previous day (X axis) and the 

forecast hour (color) (a); –24 hours from the forecast hour, 

depending on the number of the previous day (X axis) and the 

forecast hour (color) (b) 

The coefficients of the shifted matrices in the first 

approximation are seen to be independent of the fore-

cast hour; they depend only on the relative delay be-

tween the forecast hour and the previous data in-

volved in calculating the predicted value. We can 

therefore statistically process the shifted matrices, 

using an ensemble made up of shifted matrices for 

each of the 24 hours of the forecast. 

Stationarity of the shifted matrix allows us to rede-

fine its coefficients through additional statistical pro-

cessing, thereby simplifying the network architecture 

and reducing the number of free coefficients. We there-

fore analyze only the median shifted matrix of coeffi-

cients we have obtained. 

Thus, the predicted foF2 value in the first approxima-

tion is a superposition of the foF2 values at previous mo-

ments of time, and their contribution to the predicted value 

does not depend on local time, but only on the relative de-

lay between the data used for the forecast and the moment 

at which we make this forecast. 

These coefficients are described by the 3D 90×24×3 

shifted matrix in coordinates (delay in days, time shift, 

parameter), where the third coordinate is responsible for 

one of the measurements of foF2, F10.7, Dst. This shifted 

matrix will be further referred to as the response matrix.  

Let us take a closer look at the calculation of this ma-

trix, using the foF2 measurement data processing as an 

example: 

  , , ,
,l

k j l SHIFT l k j
median W   (4) 

where θ is the 90×24 response matrix for foF2; W is a 
matrix of neural network ensemble averaged coeffi-
cients obtained by calculation from Formula (2); k is 
relative shifts of the previous hour from the forecast 
hour from –36 to –13; l is a forecast hour from +1 to 
+24; j is the delay day number from 0 to 89; SHIFT(l, k) 
is the function for calculating the shifted hour number 
depending on the shift and the forecast hour, which 
converts relative shifts into hour delays relative to zero, 
which must be obtained from the matrix W; median is 
the function that returns a median column vector of size 
90 within the processed neurons. For example, Figure 7, 
a presents 24 curves corresponding to different forecast 
hours, from which the median curve is calculated for —
29 hours from the forecast hour. 

Since the shift coefficients can go beyond the matrix 
W, during calculations it is transformed by the 
SHIFT(l,k) function that corrects this problem: 

 

 

 

 

, if 23,0

, 24, if 23.

24, if 0

l k l k

SHIFT l k l k l k

l k l k

    


     


   

 (5) 

 

CALCULATION 

OF MODEL COEFFICIENTS 

FOR INPUT F107 AND Dst INDICES 

We have considered above only the influence of 

measured foF2 values on its predicted values. Using this 

model, we calculated the contribution of F10.7 and Dst to 

the predicted foF2 value. The response matrices for F10.7 
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and Dst are shown in Figure 8. 

Since the input measured data is standardized ac-

cording to Formula (1), we can estimate the relative 

contribution of foF2, F10.7, and Dst to the predicted 

foF2 value by comparing the absolute values of the coef-

ficients of response matrices with each other [Bring, 

1994]. The comparison shows that the influence of 

F10.7 and Dst on the predicted foF2 value is on average 

inconsiderable compared to the foF2 data, which can be 

explained by the architecture of our fairly simple net-

work. 

Panels a–f indicate that the result of the foF2 forecast 

should be most strongly affected by F10.7 and Dst ob-

served on the day preceding the forecast day. Panels e, f 

present the weight coefficients obtained as in Figure 7, 

which demonstrate that the response matrices are sta-

tionary. 

Panels g, h show response matrices for F10.7 and 

Dst when forecasting foF2, which were calculated using 

the same algorithm as for the response to foF2. From the 

analysis of Figure 8 we can conclude that the forecast of 

foF2 is more strongly influenced by F10.7 and Dst 

measured on the day closest to the moment of observa-

tion. The influence of F10.7 and Dst on the foF2 forecast 

on the day closest to the forecast day should be taken 

into account more carefully; it is not examined here. 

 

 

Figure 8. Weight coefficients of a neuron responsible for the +12th forecast hour, which correspond to –12th (a, b) and –18th (c, 

d) hour before the moment of observation for F10.7 (a, c) and Dst (b, d). The median weight coefficients of shifted matrices of coef-

ficients corresponding to –24 hours from the forecast hour on the previous days for F10.7 (e) and Dst (f). Response matrices for 

F10.7 (g) and Dst (h) for the foF2 forecast 
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FINAL foF2 FORECAST MODEL 

To adopt the neural network model, we retrain it, 

taking into account characteristics of the response ma-

trices — their relative independence of the moment of 

observation demonstrated above. We can therefore fix 

the output layer coefficients and the response matrices 

obtained by the corresponding ensembles (1, 10, 30, 100, 

200 independently trained models), as well as retrain the 

network to refine the shape of the convolution kernel. 

For the final architecture of the model (see Figure 3), 

the output layer coefficients have been obtained at the 

previous stage, they do not change during the training 

process. Note that in the output layer of the final model, 

the response coefficient matrices are shifted for each 

neuron so that a maximum response corresponds to a 

forecast hour. The shift was made according to the 

formula  

 
,

, , ,
,l k k

i j SHIFTOUT l i j
W    (6) 

where θ
k
 is the 90×24 response matrix of the kth criterion,; 

k is the criterion number, one criterion of foF2, F10.7, Dst; 

W is the matrix of output layer coefficients; i is the index of 

the weight matrix column from 0 to 23; l is a forecast hour 

from +1 to +24; j is a delay day index from 0 to 89; 

SHIFTOUT(l, i) is the function for calculating the shifted 

hour number depending on the response matrix index re-

sponsible for the relative shifts of the preceding hour from 

the forecast hour, and forecast hour (7). The range of out-

put SHIFTOUT (l, i) values is from –36 to –13: 

 

Table 1 

Quality metrics of the IRI model and neural network models  

with different methods for obtaining coefficients of the model 

Number of independent trainings 

for averaging coefficients 
Pearson RMSE, MHz MAPE, % R

2
 

1 0.93 0.595 10.502 0.863 

10 0.929 0.596 10.486 0.862 

30 0.929 0.596 10.468 0.862 

100 0.93 0.596 10.532 0.862 

200 0.928 0.598 10.445 0.861 

IRI Model 0.876 0.823 13.803 0.738 

 

 

 

 

,

23, if 23 36, 13

47 , if 23 13 .

1, if 23 36

SHIFTOUT l i

i l i l

i l i l

i l i l



       


      

     

 (7) 

Thus, in the last layer of the final neural network, 

output neurons differ in coefficients since the response 

matrix for each neuron is shifted in a special way ac-

cording to Formula (6). 

For each forecast hour, the initial data is transformed 

following the method described in Section “Initial Data 

for Network Training”. These are the foF2, F10.7, and 

Dst matrices. 

When training the final model, response matrices 

were selected from the corresponding ensemble of coef-

ficient matrices of the initial models (1, 10, 30, 100, 200 

models) and shifted according to Formula (6) to gener-

ate matrices of output layer coefficients of the final neu-

ral network. 

When training the network (finding convolution co-

efficients), the initial dataset was divided as follows: 60 

% — training dataset, 20 % — validation dataset, 20 % 

— test dataset. 

Four metrics have been used to assess performance of 

the model: Pearson correlation coefficient, root-mean-

square error (RMSE), mean absolute percentage error 

(MAPE), and coefficient of determination (R
2
). We com-

pared the real data from the test dataset, the data predict-

ed by the final model, and the data predicted by the IRI 

model. Figure 9, a presents the results of the forecast of 

the diurnal foF2 variation. Table 1 lists quality metrics of 

the final model when generating response matrices, using 

ensembles of 1, 10, 30, 100, and 200 independent models, 

as well as compares them with the IRI model’s quality 

metrics. We have used the IRI-2016 model with URSI. 
The data allows us to conclude that there is practically 

no improvement in the quality of the model with an in-
crease in the number of independent trainings of response 
matrix coefficients. Thus, stationarity of the response ma-
trix (its independence of the moment of observation) is the 
main factor affecting the quality metrics of this model. 

For comparison, Salimov, Khmelnov [2020] give 
quality metrics of the foF2 forecast +24 hours for the 
Recurrent Neural LSTM Network, using Irkutsk data: 
Pearson correlation coefficient — 0.923, RMSE — 
0.605 MHz, MAPE — 10.07 %. These quality metrics 
are similar to those of our model, which allows for the 
conclusion that it is important to take into account pre-
vious ionospheric observations when developing predic-
tive models. 

To analyze the behavior of the model from the data 
with gaps, we have conducted an experiment: specially 
added gaps to the test dataset so that their distribution 
was indistinguishable from the distribution of gaps in 
the training dataset (the resulting value of p-value is 
0.11 according to the Mann-Whitney test when compar-
ing the distributions of gaps of modified test and train-
ing datasets). The quality metrics of the model based on 
averaged coefficients from 200 training sessions for 
such a test dataset are as follows: Pearson correlation 
coefficient — 0.923; RMSE — 0.598 MHz; MAPE — 
10.45 %; R

2
 — 0.86. These quality matrics practically 

coincide with those of the model in the unchanged test 
dataset (see the second last row of Table 1), which al-
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lows us to conclude that the model is resistant to omis-
sions in data, which are most characteristic of current 
measurements with the Irkutsk digisonde. 

To analyze the performance of the model, depending 

on the forecast hour, we have calculated the corresponding 

metrics separately for each forecast hour. They are shown 

in Figure 10. It can be inferred that the most qualitative 

forecast is given for the 1st hour, then, by the 24th hour, 

the quality metrics become slightly worse. 

Figure 9 c, d plots the foF2 forecast during geomag-

netic storms (four days after and a day before a decrease 

in the geomagnetic index Kp below 6). It can be seen 

that the model reacts worse to a peak of the geomagnet-

ic storm and adapts to quiet conditions with some delay. 

Thus, the proposed model is more likely to describe an 

undisturbed ionosphere and is not recommended for use 

in highly disturbed conditions due to error growth. 

Figure 11 presents results of the model in different 

seasons. It can be seen that in the first approximation 

the model traces the diurnal variation satisfactorily, re-

gardless of the season. 

 

 

Figure 9. Forecast of foF2 with the neural network and the IRI model and the diurnal foF2 variation from December 14, 

2015 00:00 LST to December 16, 2015 22:00 LST (a), from October 25, 2016 00:00 LST to October 29, 2016 23:00 LST (c), 

from May 8, 2016 06:00 LST to May 13, 2016 05:00 LST (d) for Irkutsk for the final model with coefficients calculated from 

the ensemble of 200 independent training sessions; foF2 forecast, its diurnal variation for Arti (56°25' N, 58°32' E) from April 

13, 2017 00:00 LST to April 16, 2017 00:00 LST (b) 

 

Figure 10. Quality metrics of models as function of forecast hour. Lines are arithmetic means of the models, color is the 

spread of values for different final models based on responses calculated using 1, 10, 30, 100, 200 initial models 
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MODEL TEST WITH DATA  

FROM OTHER MID-LATITUDE 

IONOSONDES 

When developing forecast models, their generalizing 

ability is important, which can be tested by quality ma-

trics, using different test datasets that do not overlap 

with the training dataset. In this work, as such test da-

tasets in addition to the Irkutsk test dataset, we have 

selected data from three mid-latitude ionosondes close 

in latitude to Irkutsk, but significantly spaced in longi-

tude: Arti (Russia, 56°25' N, 58°32' E), Warsaw (Po-

land, 52°13' N, 21°02' E), Mohe (China, 52°58' N, 

122°31' E) for 2017. 

The test was carried out as follows. 

 Ionosonde data was reduced to the desired format 

(a set of 90×24 matrices and vectors of size 24). 

 The data acquired using the standardization coeffi-

cients µ and s, obtained through standardization of Irkutsk 

training datasets, was scaled according to Formula (1). 

These coefficients are applied equally to data from all ra-

dars and are listed in Table 2. For the initial and final mod-

els, the data will differ due to different methods of separat-

ing the datasets. 

 

Figure 11. Forecast of the critical frequency foF2 over Ir-

kutsk after measurements on March 1, 2016, 00:00 LST (a); 

June 1, 2016, 00:00 LST (b); September 1, 2016, 00:00 LST 

(c). The measurement points coincide with the beginning of 

the vertical line 

Table 2 

Coefficients of standardization 

of Irkutsk training datasets 

Criterion foF2, MHz F10.7 Dst 

Initial model 

(Model A) 

µ 5.403 110.795 –9.814 

s 1.989 31.779 15.051 

Final µ 5.068 100.864 –9.458 

s 1.672 26.995 14.628 

 This data was used for forecasting with the neural 

network model we propose. 

 For comparison, we forecasted foF2, using a mod-

el constructed and trained without assuming that the 

response matrix is stationary (Model A). 

 The predicted foF2 value was compared with the 

value measured at this point. 

The forecast quality matrics obtained from testing 

the mid-latitude ionosonde data are given in Table 3. 

The forecast of foF2 and its diurnal variation for Arti are 

plotted in Figure 9, b. 

It follows from Table 3 that the quality metrics of 

the final model weakly depend on the number of models 

in an ensemble, but these metrics are better than those 

of the initial Model A. Thus, we can conclude that tak-

ing into account the stationarity of response matrices 

improves the quality of the forecast. The result also 

suggests a good generalizing ability of the constructed 

models, whose absolute error is ~0.6 MHz, and weakly 

depends on the longitude of station. This allows us to 

conclude that the model we have trained is suitable for 

the prediction of foF2 according to the data from mid-

latitude ionosondes. 

 

CONCLUSIONS 

We have studied the influence of 90 days preceding the 

moment of observation on the forecast of the critical fre-

quency foF2. The foF2 forecast model one day in advance 

was obtained based on convolution networks from foF2, 

F10.7, and Dst data. Coefficients of the model have been 

derived by averaging the coefficients from 200 independ-

ent trainings of the initial model, followed by averaging the 

network’s coefficients, assuming that response matrices are 

stationary, as well as through additional training of final 

models to redefine the coefficients of the input convolution 

layer. 

We have presented a method for averaging coeffi-

cients of the model over the ensemble of independently 

trained models and the ensemble of 24 shifted matrices, 

taking into account their stationarity, which is a kind of 

analogue of the ensemble method (bagging) for this 

network architecture. 

We have demonstrated that the contribution of the 

parameters to the predicted foF2 value in the first ap-

proximation does not depend on local time (with a fore-

cast for 24 hours or less), but only on the time interval 

between the corresponding measured value and the 

moment for which the forecast is made. This indicates 

the stationarity of the response matrices. We have 

shown that the main contribution to the predicted foF2  



B.G. Salimov, O.I. Berngardt, A.E. Khmelnov, K.G. Ratovsky, O.A. Kusonsky 

66 

  

Table 3 
Quality metrics of models according to data from different mid-latitude ionosondes. Model A is constructed and trained 

without assuming that the response matrix is stationary (initial model). Quality matrics of Model A are averaged over a set o f 

200 independent model trainings 

 Model Pearson RMSE, MHz MAPE, % R
2
 

Arti Model A 0.848 0.669 14.242 0.683 

1 (final model) 0.874 0.613 13.506 0.735 

10 (final model) 0.872 0.596 12.818 0.750 

30 (final model) 0.870 0.609 13.194 0.739 

100 (final model) 0.867 0.629 13.966 0.721 

200 (final model) 0.875 0.591 12.584 0.754 

Mohe Model A 0.821 0.632 12.622 0.624 

1 (final model) 0.847 0.556 11.080 0.710 

10 (final model) 0.844 0.554 10.763 0.712 

30 (final model) 0.842 0.560 11.042 0.705 

100 (final model) 0.842 0.567 11.353 0.699 

200 (final model) 0.845 0.554 10.687 0.713 

Warsaw Model A 0.809 0.708 14.279 0.613 

1 (final model) 0.841 0.626 12.398 0.698 

10 (final model) 0.838 0.622 12.072 0.702 

30 (final model) 0.841 0.621 12.192 0.703 

100 (final model) 0.837 0.634 12.599 0.691 

200 (final model) 0.839 0.622 12.015 0.703 

 

value is made by the data obtained during the next few 

days before the forecast, the contribution of the remaining 

days decreases significantly, which is understandable from 

a physical point of view. 

We have demonstrated that taking into account the re-

sponse matrix stationarity makes it possible to improve the 

quality metrics of the model forecast compared to the 

model that omits averaging of weight coefficients (see 

Table 3). 

It has been shown that with an increase in the num-

ber of independent models used to average coefficients 

from 1 to 200, the quality of the forecast practically 

does not improve. 

The final model provides the following prediction 

quality metrics: Pearson correlation coefficient — 

0.928; root-mean-square error (RMSE) — 0.598 MHz; 

mean absolute percentage error (MAPE) — 10.45 %; 

coefficient of determination — 0.861. Compared to the 

IRI model, the model we propose yields the best quality 

metrics (MAPE is 13.803 % for IRI and 10.45 % for our 

model). As for the acceptable accuracy of the model, the 

requirement for RMSE depends on the specific problem 

being solved. Obviously, the smaller it is, the better. For 

qualitative problems of estimating radio wave propaga-

tion, RMSE ~0.7 MHz can probably be considered suffi-

ciently accurate, which makes it possible to separate the 

magnetoionic components in the mid-latitude ionosphere. 

Using data from ionosondes significantly spaced in 
longitude (Arti, Warsaw, Mohe), we have shown that 
the constructed model can be employed to predict the 
ionosphere according to data from other mid-latitude 
ionosondes without changing coefficients of this model, 
which indicates a good generalizing ability of the model. 

The work was financially supported by the Ministry of 
Science and Higher Education of the Russian Federation. 
The results were obtained using the equipment of Shared 
Equipment Center «Angara» [https://ckp-rf.ru/ckp/3056]. 
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