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Abstract. The paper discusses the outer electron belt 

dynamics, adiabatic and nonadiabatic mechanisms of 
increases and losses of energetic electrons. 

Under undisturbed conditions, the outer electron belt 
gradually empties: in the inner magnetosphere due to 
electron losses in the atmosphere and in the quasi-
trapping region due to losses at the magnetopause be-
cause drift shells of electrons are not closed there. The 
latter process does not occur in normal years due to the 
masking replenishment by freshly accelerated particles, 
but in years of extremely low activity it leads to a sig-
nificant decrease in the electron population of the belt. 

During the magnetic storm main phase, the first rea-
son for the decrease in the electron flux intensity is the 
adiabatic cooling associated with conservation of adia-
batic invariants and complemented by injection of elec-
trons into the atmosphere and their losses at the magne-
topause. Electron flux increases involve E×B electron 
injection by the induction electric field of substorm ac-

tivation and by the large-scale solar wind electric field, 
with pitch energy diffusion along with adiabatic heating 
in the recovery phase. 

The rate of electron flux recovery after a storm is de-
termined by the ratio of nonadiabatic increases and loss-
es; hence the electron flux represents a continuous series 
from low to very high values. The combination of these 
processes determines the individual character of radia-
tion belt development during each magnetic storm and 
the behavior of the belt in the quiet time. 

Keywords: magnetosphere, electrons, radiation belt, 
replenishment and losses. 
 
 
 
 
 
 
 

 

 
INTRODUCTION 

Existing reviews on radiation belts (RB) [Parks, 
Winkler 1968; Vernov et al., 1969; Friedel et al., 2002; 
Millan, Thorne, 2007; Shprits et al., 2008a] describe in 
sufficient detail both the structure of RB and its for-
mation. According to the traditional theory [Tverskoy, 
1964, 1965], the RB formation is attributed to the com-
bination of slow radial diffusion of electrons driven by 
small magnetic field pulses with losses in the atmos-
phere due to pitch-angle diffusion. In principle, this ex-
plains the observed spatial structure of trapped electrons 
with a slot region between inner and outer radiation belts. 

During magnetic storms, this pattern is disturbed; 
there occur dynamic variations, decreases, and increases 
in energetic electron fluxes. Fluxes of energetic “killer” 
electrons attract greater attention of researchers, there 
are works devoted to the prediction of their mean or 
maximum values [Li et al., 2001; Simms et al., 2016] 
(see also the review [Potapov, 2017]). 

A large number of papers analyze the RB dynamics 
during magnetic storms [Baker et al., 1997; Li et al., 
1997; Reeves et al., 1998; Yu et al., 2015; Hwang et al., 
2015; Turner et al., 2017]; a lot of these studies have 
been carried out at SINP MSU [Vernov et al., 1965; 
Kuznetsov et al., 1966; Bakhareva, 2003; Ivanova et al., 

2000; Kalegaev et al., 2015; Antonova, 2005; Lazutin, 
2012; Kalegaev, Vlasova, 2014; Dmitriev et al., 2010, 
2014; Slivka et al., 2006; Tverskaya et al., 2005; 
Vernov et al., 1969]. Accordingly, it seems appropriate 
to review current ideas about the RB dynamics. Note 
that the review is based largely on studies carried out at 
SINP MSU. 

In the review, we first describe the RB dynamics 
during magnetic storms and then the mechanisms of 
replenishment and losses of energetic electrons; finally, 
we examine the behavior of RB in the quiet time. This 
paper is intended for use by readers familiar with the 
basic concepts: particle motion and adiabatic invari-
ants, dynamics of fields and currents during magnetic 
storms, etc. 

 
MAGNETIC STORMS 

Figure 1 shows energetic electron and proton fluxes 
measured by the low-orbit satellite SERVIS from Feb-
ruary 5 to February 25, 2004, in particular during the 
February 11, 2004 magnetic storm. Flux intensity dips 
are observed in all storms on all RB shells in a wide 
range of energies and for particles of different types. 
These dips are largely caused by a change in the struc-
ture of the magnetosphere when subject to the so-called 
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Figure 1. Electron and proton fluxes measured by SERVIS-1 

when it passes over the L levels in the Northern Hemisphere on 
February 5–25, 2004. A magnetic storm with a minimum 
Dst=–110 nT occurred on February 11, 2004 

 
Dst effect. This effect is necessarily present in the storm 
main phase, but there may be additional nonadiabatic 
losses, in particular precipitation of particles into the 
atmosphere. If there are no nonadiabatic processes 
(losses or accelerations), the RB configuration and par-
ticle fluxes should fully recover after a storm. 

But often this does not happen. After a storm, the 
electron flux can return to the pre-storm level as well 
as exceed it or not recover completely. In the well-
known paper [Reeves et al., 2003], storms are divided 
into these three types. In fact, this division is arbi-
trary (see Figure 3, a, c in [Reeves et al., 2003]). If we 
do not pay attention to the difference in the marks as-
signed by the author, after the storm there is a continuous 
series of electron flux intensities lower or higher than pre-
storm ones. We think that this series is created by differ-
ent ratios of particle flux losses and increases during the 
storm: if the losses exceed replenishment, the flux is not 
fully recovered, if they do not exceed replenishment, the 
flux after the storm is higher than the pre-storm one. 

 
ADIABATIC VARIATIONS 
(Dst EFFECT) 

During the magnetic storm main phase, the magnetic 
field strength in internal field lines decreases. To main-
tain the same magnetic flux level, the drift shell shifts 
outward to the region where field lines are longer; there-
fore, to conserve the second invariant (the distance be-
tween mirror points), mirror points are displaced along a 
field line upward. A decrease in the magnetic field 
strength at the new, higher mirror point leads to a de-
crease in particle energy because the first adiabatic in-
variant (magnetic moment) should remain unchanged.  

This effect, first described by McIlwain [1966] and 
later by Kim and Chan [1997], is called the Dst effect. 
During the storm main phase, the Dst effect always caus-

es a decrease in the intensity of electron fluxes, which 
serves as a base for additional nonadiabatic effects. 

During the storm recovery phase, an adiabatic return 
to the pre-storm level should occur; however, the loss and 
acceleration processes decrease or increase the number of 
particles involved in the recovery process, thus producing 
a continuous series of intensity of electron fluxes.  

Note that a rise of solar wind pressure in the storm 
initial phase, which leads to an increase in the magnetic 
field intensity rather than its decrease, as in the storm 
main phase, causes an inverse Dst effect — an adiabatic 
increase in the energy of trapped magnetic particles and 
thus an increase in the intensity of their fluxes. A part of 
particles close to the loss cone due to the decrease in the 
position of mirror points precipitates into the atmos-
phere and is lost there, but a satellite in RB does not 
register this loss. 

 
ADIABATIC VARIATIONS. 
DAWN-DUSK ASYMMETRY 

When studying time variations in electron flux in-
tensities during a storm, a false impression of disap-
pearance of particles may be created when we, instead 
of the magnetic drift trajectory varying during the 
storm, use the L coordinate of undisturbed level, which 
is usually given in a database of measurements from 
low-orbit satellites. 

Our Figure 1 (as in many Figures from other papers) 
uses L as an indicator of the normalized distance to the 
top of a field line, but it is improper to use the undis-
turbed level parameter L to describe the particle dynam-
ics during a magnetic storm. Let us illustrate this state-
ment by a concrete example. 

At the beginning of the storm main phase, the ring 
current asymmetry creates a situation where the electron 
flux on the dusk side decreases, while the dawn flux 
remains undisturbed (Figure 2). In [Lazutin, 2016], this 
effect has received a simple explanation: the drift shell 
in the attenuated dusk magnetic field is adiabatically 
displaced to lower latitudes. Since many Figures repre-
sent electron fluxes as a function of the L coordinate 
calculated for the quiet magnetic activity level and not 
for the corresponding moments of the storm, we can 
consider the presented picture as a result of the dis-
placement of the drift shell toward Earth. 

 
Figure 2. Six consecutive electron profiles recorded by 

SERVIS-1 on the dawn and dusk sides in the 0.3 MeV channel 
during the main phase of the July 25, 2004 magnetic storm 
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Figure 3. During the storm main phase, the field lines A1 and 

B1 are transformed into A2 and B2. Drift shells of particles go 
(along arrows) from A1 to B2; at the equator, from Earth; and 
near footpoints of field lines, to lower latitudes 

 
There is an apparent contradiction: due to the Dst 

effect, the drift shell goes away from Earth, whereas 
according to the said considerations it approaches 
Earth. Are these two different adiabatic effects? But 
this should not be so. An explanation of the contradic-
tion is given in Figure 3. The change in the magnetic 
field during the storm main phase actually shifts the 
drift shell at the equator from Earth, but at low heights, 
near the footpoint of the field line the drift shell is dis-
placed to lower latitudes because of its new shape. 

Let us examine mechanisms of losses and accelera-
tions working during a storm. We start with the interac-
tion with waves that can cause both a decrease and an 
increase in the energetic electron flux. 

 
INTERACTION OF ELECTRONS 
WITH HIGH-FREQUENCY WAVES 

Energetic electrons can effectively interact with 
plasmaspheric hisses and with VLF emission above the 
plasmapause. The interaction leads to diffusion both 
along pitch angles and in the velocity space, thus caus-
ing precipitation of particles into the atmosphere and a 
decrease in flux intensity as well as particle acceleration 
and an increase in flux intensity and electron energy. 
Gyroresonance with waves of various types in the range 
from 0.1 to units of electron gyrofrequency described in 
[Horne, Thorne, 1998; 2003] has also been extensively 
experimentally and theoretically studied.  

Changes in particle energy and pitch angle under the 
impact of resonance with trains of VLF emission cause 
the particle to wander along pitch angles, thus leading to 
its precipitation into the loss cone and dropout in the 
atmosphere. The electron dropout in the atmosphere 
during the interaction with VLF emission has been stud-
ied in a number of theoretical papers (for example, 
[Shprits et al., 2008b]) and is described in detail in stud-
ies based on measurements; in some of them, their 
dropouts in the atmosphere are considered as the main 
mechanism causing an electron flux decrease after a 
storm [Zakharov, Kuznetsov, 1978; Summers et al., 
2004; Meredith et al., 2007; Xiao et al., 2014]. 

Other articles demonstrate the significance of pitch-
angle diffusion in velocities for electron flux increases 
(Summers et al., 1998; Horne et al., 2005; Demekhov et 
al., 2006; Foster et al., 2017]. Acceleration to energies 
of the order of 1 MeV occurs in RB with a maximum at 
L~4–7. The condition for the effective increase in the 
electron flux is a high substorm activity, which produc-
es freshly accelerated electrons with a 20–100 keV en-
ergy serving as the initial flux; and a high power of cho-
rus is observed. 

Relativistic electrons are accelerated due to parasitic 
diffusion by waves generated by less energetic elec-
trons. Such two-stage acceleration is described, for ex-
ample, in [Jaynes et al., 2015; Foster et al., 2017]. 

According to [Summers et al., 2004], the character-
istic time of acceleration and losses is approximately the 
same and is about a day, but it varies greatly depending 
on parameters of a medium. 

Exotic, but real process is the electron precipitation 
due to parasitic resonance with electromagnetic ion-
cyclotron (EMIC) waves [Summers, Thorne, 2003; 
Lazutin et al., 2011; Ni et al., 2015; Kubota, Omura, 
2017]. EMIC waves are generated by ring current pro-
tons during the storm main phase. Since the cyclotron 
frequency of protons is much lower than the cyclotron 
frequency of electrons, the interaction occurs as a result 
of Doppler frequency shift in the opposing wave and 
particle motion. In this case, the longitudinal electron 
velocity should be very high, and hence it causes precip-
itation of electrons only with an energy of several MeV. 

 
LOSSES AT THE MAGNETOPAUSE 

Sufficiently convincing arguments for the mecha-
nism of electron dropout at the magnetopause have been 
put forward in [Dmitriev, Chao, 2003; Shprits et al., 
2006, Millan, Thorne, 2007; Kim et al., 2008; Saito et 
al., 2010; Matsumura et al., 2011; Turner et al., 2012; 
Hudson et al., 2014; Lazutin, 2016]. In the quasi-
trapping region, drift shells are not closed; on the night 
side, electrons drift with adiabatic invariants remaining 
unchanged to the morning magnetosphere—magnetopause 
boundary; protons, to the evening boundary (and vice 
versa on the dayside); then they go from the closed field 
lines to the turbulent magnetosheath. This continuous 
outflow of electrons from RB increases during the storm 
main phase, when the Dst effect shifts drift shells of 
electrons from Earth [Reeves et al., 2003]. Moreover, 
magnetic storms often occur with sharp increases in 
solar wind plasma density and velocity, causing an ab-
rupt shift of the magnetopause to Earth and an increase 
in losses of electrons from the outer magnetosphere 
[Dmitriev, Chao, 2003]. 

Due to the pitch-angle diffusion, a small part of elec-
trons (a few percent) can return from the magnetosheath 
to drift orbits, as evidenced by the so-called drift echo 
effect [Vampola, Korth, 1992], but most of the particles 
go to the magnetotail [Daibog et al., 2015] and to inter-
planetary space. 

As a result, the quasi-trapping region should 
quickly empty; however, as can be seen from measure-
ments made at the geostationary orbit (see, for example, 
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Figure 4. Electron fluxes and magnetic activity indices (moderate disturbances): “sinusoidal” electron flux variations — 

manifestation of the day-night asymmetry of the magnetospheric magnetic field; 1 — an electron flux decrease during the storm 
main phase, 2 — electron losses at the magnetopause, 3 — an electron flux increase due to radial drift from the center of RB 

 
Figure 4), it does not empty due primarily to the oncom-
ing acceleration; and in the absence thereof, due to the 
diffusion of particles from the region of radiation belt 
maximum (a region closer to Earth), which is opposite 
to the radial diffusion from Earth. Radial diffusion from 
a region with a high particle flux into a region with a 
lower one is described, for example, in [Shprits et al., 
2006]. As a result, the electron density in RB decreases 
if, of course, there is no replenishment due to particle 
acceleration. Intervals of slow decrease in the intensity 
of electron fluxes are shown in Figure 4; in these time 
intervals the Kp index is low, the substorm activity is 
absent. The rest of the time, the replenishment of elec-
tron population due to substorm activity masks this pro-
cess. 

 
ACCELERATION PROCESSES. 
SLOW E×B DRIFT 

There is a wide variety of mechanisms for accelerat-
ing energetic electrons in the magnetosphere. We have 
already said that electrons can accelerate at resonance 
with VLF waves. Along with the cyclotron resonance, 
we can expect a drift resonance with magnetospheric 
Pc5 pulsations or solar wind pulsations with a period of 
the order of several minutes. Acceleration of this type is 
mentioned, say, in [Elkington et al., 1999; Ukhorskiy et 
al., 2006]. The acceleration of electrons due to the radial 
electric drift or their shift to the region of a stronger 
magnetic field is faster and more efficient. A large-scale 
electric field is driven by the solar wind. The Akasofu 
index representing the effectiveness of the solar wind 
effect on Earth's magnetosphere contains the velocity 

 
Figure 5. Earthward shift of the low-latitude slope of RB 

during the chain of magnetic storms in July 2004 

and magnitude of the vertical component of the inter-
planetary magnetic field. 

A dawn-to-dusk large-scale convective electric field 
spins up the convective vortex in the magnetotail. This 
field penetrates both into the auroral magnetosphere and 
into the outer RB, thus allowing RB particles to be ac-
celerated by the electric drift, which is well documented 
[Tverskaya et al., 2005; Califf et al., 2017; Claudepierre 
et al., 2017; Millan, Baker, 2012; Turner et al., 2017]. 
Califf et al. [2017] state that the E×B drift is effective 
up to 500 keV, whereas for high-energy electrons we 
have to take into account additional mechanisms. 
Indeed, the authors consider electrons of the plasma 
layer in the magnetotail to be the initial source; energy 
of the electrons is two orders of magnitude lower than 
that of the substorm auroral electrons. Especially powerful 
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Figure 6. Relaxation of excess electron flux after the July 2004 storms 
 

acceleration and the increased particle flux remaining 
unchanged for many days are observed as a result of 
chains of successive magnetic storms. Such an unusual 
case is described in [Kuznetsov et al., 2009; Yang et al., 
2014]. Using data from the former paper, we show in 
Figure 5 how the low-latitude boundary of electrons and 
protons, trapped in RB, shifts (those days, RB was filled 
with solar protons). The earthward shift is driven by the 
E×B drift. This is confirmed by the equal velocity for 
particles of all energies and types. 

Moving to the region of higher magnetic field 
strength, particles increase their energy. This causes an 
increase in the particle flux. Figure 6 [Lazutin et al., 
2012] shows that RB gets rid of such an overpopulation 
for a long time. Note that strong storms may result in 
the formation of additional energetic electron belts in 
the vicinity of the slot region, which also exist for 
months [Vernov et al., 1965; Kuznetsov, 1966; Loga-
chev, Lazutin, 2012]. 

 
ACCELERATION PROCESSES. 
FAST E×B SHIFT 

An electric field can also be short-term, caused by a 
rapid change in the magnetic field at the time of SC or 
substorm activation. The shift of electrons and protons 
by an SC pulse deep into RB, detected during measure-
ments made by CRRES [Li et al., 1993] on March 24, 
1991, was analyzed in [Pavlov et al., 1993]. The SC 
pulse is double – a positive pulse followed by a negative 
one; therefore, if particles are not transferred by the 
magnetic drift to the night side on time, an increase in 
their energy (and flux intensity) is eliminated adiabati-
cally. The particles which have a 1–3 min half-period of 
drift pass to the night side, where they also experience a 
radial drift with acceleration driven by a negative pulse. 
We can thus estimate the lower limit for particle ener-

gies for which the mechanism will operate — on the 
order of a few MeV. If we consider that high SC pulses 
(from 50 nT and higher) occur at most twice a year, the 
shift of electrons with an energy of several MeV by an 
SC pulse to a greater depth does not play an important 
role in RB dynamics. 

Much more often there is a pulsed dipolization of the 
magnetic field at the moment of breakup or re-activation 
of a substorm. It leads to the fact that along with the 
increase in the flux of low-energy (to several keV) elec-
trons, responsible for auroras and accelerated by a lon-
gitudinal electric field, there is an impulsive increase in 
the flux of energetic electrons in the auroral magneto-
sphere. Characteristics of these increases have been ex-
tensively studied using both balloon [Anderson, 1965] 
and satellite observations, in particular CREES meas-
urements in the equatorial plane. As a rule, these elec-
trons appear in a quasi-trapping region, have an energy 
20–200 keV, and cause subsequent acceleration by the 
radial E×B drift, mentioned above [Tang et al., 2016]. 

At the same time, during magnetic storms when the 
region of substorm activations shifts to Earth, the sub-
storm electric field pulse shifts electrons to the center of 
RB, to the region of high magnetic field strength, and 
the ultimate energy of freshly accelerated electrons can 
reach several MeV [Lazutin, 2013]. Consequently, the 
electron flux gradient along the outer RB slope increas-
es; and in the quasi-trapping region the particle flux 
gradually increases due to the outward drift. The elec-
tron acceleration via the substorm shift has also been 
considered in [Kabin et al., 2017; Gabrielse et al., 2016, 
2017]. 

Nishida [1976] has put forward an idea of electron 
“recirculation” according to which electrons, once ac-
celerated by electric drift, move again to a distant field 
line and are accelerated in this way many times. The 
idea suggested for Jupiter’s magnetosphere has found 
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Figure7. Electron flux in two energy channels, measured by the geostationary satellite GOES-11, and magnetic activity 

indices (the last quarter of 2009) 
 

supporters who applied it to Earth’s magnetosphere 
[Baker et al., 1997]. 

Zhenpeng Su et al. [2014] emphasize the difference 
between subrelativistic (∼0.1 MeV) and relativistic 
(2–5 MeV) electrons: the former provide up to 100 % 
of flux increases due to the shift deep into RB; the latter, 
only 20 %; in this case, the increase takes a few 
minutes. According to the calculation, the interaction 
with choruses gives 60–80 % of increases in the flux of 
energetic electrons (0.2–5.0 MeV), which take a longer 
time (~6 hr). A similar difference in the behavior of elec-
trons of different energies has been revealed in the sta-
tistical analysis carried out by Ying Xiong et al. [2015]: 
the flux of 0.3–2.5 MeV energetic electrons increases in 
87 % of storms, whereas the flux of 2.5–14 MeV elec-
trons, only in 35 % of storms. 

 
RADIAL TRANSPORT 

Radial transport, shift, injection, diffusion – there 
are many terms and mechanisms; and not to get con-
fused and not to confuse readers, we briefly describe 
these mechanisms. 

To Earth, a particle flux is transported with accelera-
tion by pulsed substorm injection and E×B drift in a 
large-scale electric field during a magnetic storm, by 
wave and pulsed radial diffusion. The last mechanism 
(the slowest according to [Tverskoy, 2004]) is responsi-
ble for the formation of the electron radiation belt.  

At the end of the storm main phase there occurs a 
returned adiabatic transport to Earth.  

Moreover, both during the storm and during the qui-
escent period, a continuous electron flux from Earth is 
observed as a result of drift due to the negative radial 
gradient of trapped particles. 

 
THE QUIET MAGNETOSPHERE 

The alternation of the above processes leads to the 
fact that the outer electron radiation belt “breathes” all 

the time, and not only the intensity of fluxes of its in-
habiting particles varies, but also dimensions of RB 
itself do. These variations are most pronounced in a 
quasi-trapping zone.  

Electron flux measurements made by a geostationary 
satellite along with magnetic activity indices are exem-
plified in Figure 4, in which we show several character-
istic variations of electron fluxes. A rapid quasiharmonic 
variation with a period of 24 hr (the orbital period) is 
associated with the day-night asymmetry of the magne-
tosphere. Besides the rapid adiabatic decrease in elec-
tron flux intensity during the storm main phase (1), we 
see intervals with a slow decrease in intensity (2) during 
periods of low substorm activity and, conversely, of its 
slow increase (3), which is not induced by momentary 
activity but by the outward gradient radial drift from 
deeper RB regions (3).  

These variations are generally short-lived, flux intensity 
decreases are compensated by increases, and the average 
monthly RB remains stable. At the same time, there may 
be long-term depletions of the radiation belt, which have 
been discussed in a number of papers. Thus, in [Jaynes et 
al., 2014], a long-term decrease in RB electron flux is ex-
plained by the fact that in a quiescent period, without 
acceleration, all losses are attributed to 700 keV – 2 MeV 
electron precipitation (up to 92 % and more). Ukhorskiy 
et al. [2015], on the contrary, note that losses at the 
magnetopause are responsible for most of the losses at 
L>5, whereas at smaller L the decrease is adiabatic. 
Even during years of minimum solar activity, the level of 
magnetic disturbances remains sufficient to mask the de-
pletion of the outer RB, and only in the particularly deep 
minimum of 2009 there was a significant depletion 
[Kataoka, Miyoshi, 2010; Li et al., 2011; Lee et al., 2013; 
Lazutin, 2017]. Magnetic activity in those years was in-
deed very low, as derived from the distribution of the 
number of days with high and low Kp indices. 

Figure 7 shows that there are much more intervals of 
a slow electron flux decrease, and of course they coin- 
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Figure 8. Distribution of electron flux levels in years of maximum (2004) and minimum (2008–1010) solar activity 
 

cide with periods of low substorm activity. Finally, the 
depletion of RB is detected by comparing histograms of 
distribution of days with different electron flux levels in 
2009 with years of higher magnetic activity (Figure 8). 
We mean the depletion of the entire RB because a de-
crease in the particle flux on the periphery of RB leads, 
due to diffusion, to the depletion of RB as a whole. 

 
CONCLUSION 

At the time free from magnetic disturbances (sub-
storms), the outer electron radiation belt gradually emp-
ties. This process occurs on inner shells of RB due to 
precipitation of particles into the atmosphere and in a 
quasi-trapping zone because electron drift shells are not 
closed there. This causes losses at the magnetopause. 
The quasi-trapping region does not empty immediately 
due to radial diffusion of particles outward from the 
center of RB. The depletion is not well pronounced in 
ordinary years due to replenishment by freshly acceler-
ated particles, but in years of extremely low activity, it 
leads to a considerable decrease in the electron popula-
tion of the belt. 

During the storm main phase, the major mechanism 
for the decrease in the intensity of electron fluxes is 
adiabatic cooling associated with conservation of adia-
batic invariants. An additional reason is the precipita-
tion of electrons from RB to the atmosphere and magne-
topause. As a result, the intensity of electron fluxes in 
RB decreases. The L coordinate calculated for the un-
disturbed configuration of the magnetospheric magnetic 
field is often used in plots of low-orbit satellite meas-
urements. In these cases, we should remember that this 
representation does not show the real drift trajectory. 

The rate of electron flux recovery after a storm is de-
termined by the ratio of increases and losses, and flux 
values constitute a continuous series from low to very 
high values.  

The electron flux increases consist of the following 
processes: 

• The fast E×B electron shift, accompanied by an en-
ergy increase, deep to Earth by a pulsed induction electric 
field of substorm activation during a magnetic storm.  

• This abrupt increase in the auroral electron flux 
intensity serves as the basis for the second, slower in-
crease in the electron flux in RB due to electron injection 
to Earth by a large-scale electric field of the solar wind. A 
chain of several storms can sometimes increase the elec-
tron flux by several orders of magnitude, and this over-
population of RB may decrease for months. In addition, 
there may appear additional RBs in a slot region.  

On the periphery of RB, in the quasi-trapping re-
gion, an increase in particle fluxes is ensured by the 
anti-earthward energetic electron drift, which replenish-
es the quasi-trapping region (geostationary region) with 
a 2–3 day delay.  

The electron flux intensity in RB decreases mainly due 
to losses at the magnetopause, which become more intense 
during the storm main phase due to the adiabatic shift of 
drift shells and during periods of low substorm activity. 
During the extremely low activity of 2009, this mechanism 
led to significant losses of RB particles. 

The resonance of electrons (cyclotron, drift) with 
VLF emission and pulsations leads both to their pitch-
angle diffusion to the loss cone and their dropout in the 
atmosphere, and to an increase in the energetic electron 
flux in parasitic resonance at the emission produced by 
a large flux of less energetic particles.  

The combination of these processes forms the individ-
ual character of radiation belt dynamics during each mag-
netic storm. 
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