Аннотация и ключевые слова
Аннотация (русский):
A dynamic simulation model of the contractile function of the heart is presented. The contractile function simulation is based on the modeling of the muscle fibers' structure according to the Atlas of human anatomy and the use of parameters of their geometric shape as parameters that control the contraction. The basic concepts of the architecture of muscle fibers of the myocardium and the structure of the blood supply to the heart are investigated. An algorithm is developed for local parameterization of the contractile function of the heart, which mimics blood flow and conduction disturbances via special control functions. The algorithm of the simulation model is shown in the example of only the left ventricle of the heart but is embedded in the full three-dimensional model of the ventricular complex of the heart. The simulation model is implemented as a solid-state parameterized model in the Autodesk Maya tool environment, managed by a program in the embedded Python language. The result is compared with the results of the OpenCMISS software in favor of the latter. It is planned to continue work with the implementation of the most advanced concept of the myocardial architecture of Torrent-Guasp together with the networks of electrical excitation and blood supply.

Ключевые слова:
simulation model, human heart, ventricular complex, contractile function
Список литературы

1. Buckberg GD,Weisfeldt ML, Ballester M, Beyar R,Burkhoff D, Coghlan HC, Doyle M, Epstein ND, Gharib M,Ideker RE, Ingels NB, LeWinter MM, McCulloch AD,Pohost GM, Reinlib RJ, Sahn DJ, Spinale FG, Spotnitz HM,Sopko G, Torrent-Guasp F, Shapiro EP. Left ventricularform and function: scientific priorities and strategicplanning for development of new views of disease.Circulation 2004;110:e333—6.

2. Buckberg GD. Architecture must document functionalevidence to explain the living rhythm. Eur J CardiothoracicSurg 2005;27:202—9.

3. Feher A., Sinusas A.J., Quantitative Assessment ofCoronary Microvascular Function // Circ. Cardiovasc.Imaging. 2017. 21p. DOI:10.1161/CIRCIMAGING.117.006427.

4. Human Heart 3D Models [Электронный ресурс] - . -(Дата обращения: 08.08.2019).

5. Kardel T. Steno on muscles: introduction, texts, translations// Trans Am Phylos Soc 1994;84(1):58—75.

6. Kocica M.J., Corno A.F., Carreras-Costa F., BallesterRodes M., Moghbel M.C., Cueva C.N.C., Lackovic V.,Kanjuh V.I., Torrent-Guasp F. The helical ventricularmyocardial band band: global, three-dimensional,functional architecture of the ventricular myocardium(Review)// European.

7. LeGrice IJ, Takayama Y, Covell JW. Transverse shearalong myocardial cleavage planes provides a mechanism fornormal systolic wall thickening. Circ Res 1995;77:182—93.

8. Okada J. et al. Multi-scale, tailor-made heart simulation canpredict the effect of cardiac resynchronization therapy //Journal of Molecular and Cellular Cardiology. V.108, July2017, P. 17-23.

9. Pravdin S.F., Berdyshev V.I., Panfilov A.V., KatsnelsonL.B., Solovyova O., Markhasin V.S.. Mathematical modelof the anatomy and fibre orientation field of the leftventricle of the heart // Biomedical Engineering Online,12:54, 2013. 21 p.

10. Pravdin S.F., Dierckx H., Katsnelson L.B., Solovyova O.,Markhasin V.S., Panfilov A.V.. Electrical wave propagationin an anisotropic model of the left ventricle based onanalytical description of cardiac architecture // PLOS One.2014. PLoS ONE 9(5): e93617.

11. Robert Galanakis, Practical Maya Programming withPython / Published by Packt Publishing Ltd., 2014, 354р.,ISBN 978-1-84969-472-8.

12. Smaill BH, LeGrice IJ, Hooks DA, Pullan AJ, Caldwell BJ,Hunter PJ. Cardiac structure and electrical activation:models and measurement. Proc Austral Physiol Pharm Soc2004;34:141—9.

13. Torrent-Guasp F, Kocica MJ, Corno A, Komeda M, Cox J,Flotats A, Ballester-Rodes M, Carreras-Costa F. Systolicventricular filling. Eur J Cardiothorac Surg 2004; 25(3):376—86.

14. Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M,Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H.Towards new understanding of the heart structure andfunction. Eur J Cardiothorac Surg 2005;27:191—201.

15. Renowned scientist Vladimir Mironov, tissue engineering,the author of the press technology in Moscow (24.08.2019).

16. Matveyenko V.P., Shardakov I.N., Shestakov A.P.Algorithm for creating three-dimensional images of humanorgans using tomography data// ISSN 1812–5123 RussianJournal of Biomechanics. 2011. Vol. 15, No. 4 (54): 15–27 pp.

17. Operatsyi s ispolzovaniem modeley serdsa otpechatannyhna 3D printere. [Electronic resource, in Russian] - /2017/ (25.08.2019).

18. Pravdin S.F. Mathematical modeling of the structure andfunction of the left ventricle of the heart / Synopsis of thedissertation for the degree of candidate of physical andmathematical sciences, 2015. 20p (in Russian).

19. Titova M.V., Tomchinskaya T.N. Development of asimulation model of the contractile function of the heart inAutodesk Maya // GraphiCon 2018: Proceedings of the 28thInternational conf. Computer Graphics and Machine Vision.Tomsk, Sept. 24–27, 2018. – 511 p. ISSN 2618-8317 (inRussian).

20. Wilkins M.R., Kazmier K. MEL Scripting for MayaAnimators. -2nd Edition, 2005, -548 pp.

21. Tel Aviv University Scientists Print First 3D Heart UsingPatient’s Own (24.08.2019).

22. Shardakov I.N., Shestakov A.P. Construction of the 4-chamber geometrical image of human heart based on x-raytomography // Russian Journal of Biomechanics. 2015. V.19, No 4: 320–331. DOI: 10.15593/RJBiomech/2015.4.04.

23. Shestakov A.P./ Mathematical modeling of myocardialelectrodynamics and analysis of factors affecting its modes.– Dissertation for the degree of candidate of physical andmathematical sciences, Inst.MSS UrO RAN, 2019. -117p(in Russian).