
Solar-Terrestrial Physics. 2022. Vol. 8. Iss. 3. P. 3–12. DOI: 10.12737/stp-83202201. © 2022 
Petrashchuk A.V., Mager P.N., Klimushkin D.Yu. Published by INFRA-M Academic Publishing House 

This is an open access article under the CC BY-NC-ND license 

UDC 533.951                    Received May 28, 2022 
DOI: 10.12737/stp-83202201              Accepted August 17, 2022 
 

NUMERICAL ANALYSIS OF THE SPATIAL STRUCTURE OF ALFVÉN WAVES 

IN A FINITE PRESSURE PLASMA IN A DIPOLE MAGNETOSPHERE 
 

A.V. Petrashchuk 
Institute of Solar-Terrestrial Physics SB RAS, 

Irkutsk, Russia, petrashchuk@mail.iszf.irk.ru 

P.N. Mager 
Institute of Solar-Terrestrial Physics SB RAS, 

Irkutsk, Russia, p.mager@iszf.irk.ru 

D.Yu. Klimushkin 
Institute of Solar-Terrestrial Physics SB RAS, 

Irkutsk, Russia, klimush@iszf.irk.ru 

 

 

 

Abstract. We have carried out a numerical analysis 

of the spatial structure of Alfvén waves in a finite pres-

sure inhomogeneous plasma in a dipole model of the 

magnetosphere. We have considered three magneto-

sphere models differing in maximum plasma pressure 

and pressure gradient. The problem of wave eigenfre-

quencies was addressed. We have established that the 

poloidal frequency can be either greater or less than the 

toroidal frequency, depending on plasma pressure and 

its gradient. The problem of radial wave vector compo-

nent eigenvalues was considered. We have found points 

of Alfvén wave reflection in various magnetosphere 

models. The wave propagation region in the cold plas-

ma model is shown to be significantly narrower than 

that in models with finite plasma pressure. We have 

investigated the structure of the main Alfvén wave har-

monic when its polarization changes in three magneto-

sphere models. A numerical study into the effect of 

plasma pressure on the structure of behavior of all Alf-

vén wave electric and magnetic field components has 

been carried out. We have established that for certain 

parameters of the magnetosphere model the magnetic 

field can have three nodes, whereas in the cold plasma 

model there is only one. Moreover, the longitudinal 

magnetic field component changes sign twice along the 

magnetic field line. 

Keywords: MHD waves, dipole model of the mag-

netosphere, MHD resonances. 

 

 

 

INTRODUCTION 

Alfvén waves are very common in Earth's magne-

tosphere. They are identified with a significant part 

of ultra-low frequency (ULF) waves in the magneto-

sphere [Clausen, Yeoman, 2009], play an important 

role in accelerating charged particles [Mann et al., 

2012; Zong et al., 2017; Potapov et al., 2012; 

Klimushkin et al., 2021], in magnetosphere-ionosphere 

coupling [Tamao, 1984; Lysak, Song, 2006] and auroral 

phenomena [Fedorov et al., 2001; Pilipenko et al., 2004; 

Kostarev et al., 2021; Keiling, 2021]. An important pa-

rameter determining the structure of Alfvén waves is the 

azimuthal wave number m [Chen, Hasegawa, 1991; 

Leonovich, Mazur, 1993]. When it is small (m~1), the 

phenomenon of resonant excitation of Alfvén waves 

occurs as follows. A fast magnetic sound (FMS) is ex-

cited at the boundary of the magnetosphere by processes 

in the solar wind [Mazur, Chuiko, 2011; Mishin et al., 

2013; Leonovich et al., 2021] and propagates deep into 

the magnetosphere. Near a magnetic shell, FMS is re-

flected inward, the superposition of incident and reflect-

ed FMS waves forms a standing mode, also known as 

the global MHD mode. However, part of the FMS ener-

gy penetrates into the non-propagation region, exciting 

there an Alfvén wave on a resonant magnetic shell [Le-

onovich, Mazur, 2016]. Such a resonant Alfvén wave 

has a number of observable properties: a sharp peak in 

amplitude, a phase shift by 180° when passing through a 

resonant feature, as well as a region with opposite phase 

delays on the side of the wave source [Glassmeier et al., 

1999; Pilipenko et al., 2016]. These conclusions of the 

theory are confirmed by both ground-based and satellite 

experiments [Samson, 1988; Agapitov et al., 2009; Pili-

penko et al., 2016]. Nonetheless, at large values of the 

azimuthal wavenumber ( 1,m azimuthally small-scale 

waves), the Alfvén wave cannot be excited by reso-

nance with FMS since only an exponentially small part 

of FMS energy penetrates into the magnetosphere [Gug-

lielmi, Potapov, 1984]. Alfvén waves 1m can there-

fore be generated only by intramagnetospheric sources 

such as various plasma instabilities [Karpman et al., 

1977; Southwood, 1983] or alternating currents, caused 

by the drift of substorm clouds of charged particles 

[Guglielmi, Zolotukhina, 1980; Mager, Klimushkin, 

2007]. In this work, we investigate the azimuthally 

small-scale Alfvén waves. 

In terms of wave polarization, there are two extreme 

cases of Alfvén waves in the magnetosphere, called 

toroidal and poloidal modes. These modes are character-

ized by field line fluctuations in azimuthal and radial 

directions respectively. In accordance with the polariza-

tion properties of Alfvén waves, the electric field vector 

oscillates in the radial and azimuthal directions respec-

tively. In toroidal modes, the radial wavelength is much 

smaller than the azimuthal one; in poloidal modes, vice 

versa. Poloidal Alfvén waves can have only large azi-

muthal wavenumbers ( 1m ), while toroidal ones have 

both small (m~1) and large ones [Leonovich, Mazur, 
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1993; Leonovich, Mazur, 2016]. Let us emphasize that 

the large azimuthal wave number is only a necessary but 

insufficient condition for the poloidal polarization of 

Alfvén waves. Even at 1m  a wave may have toroidal 

polarization if the radial wavelength is much smaller 

than the azimuthal one. This issue has been examined in 

depth in [Leonovich, Mazur, 1993]. The authors have 

shown that a monochromatic azimuthally small-scale 

Alfvén wave that initially has poloidal polarization gen-

erally propagates across magnetic shells due to specific 

dispersion caused by field line curvature. In this case, 

the azimuthal wavelength remains approximately con-

stant, yet the radial wavelength gradually decreases and 

eventually turns out to be shorter than the azimuthal 

one. Accordingly, the wave polarization changes from 

poloidal to toroidal. Moreover, if an azimuthally small-

scale Alfvén wave is generated by a pulsed source, it 

turns into a toroidal one due to phase dispersion [Mann, 

Wright, 1995; Leonovich, Mazur, 1998]. Thus, toroidal-

ly polarized waves can have both small and large azi-

muthal wave numbers. 

The Alfvén wave structure is often studied using the 

Wentzel—Kramers—Brillouin (WKB) radial coordinate 

approximation [Leonovich, Mazur, 1993]. In toroidal 

modes, the radial wave vector component goes to infini-

ty; in poloidal modes, to zero. 

Eigenfrequencies of oscillations in toroidal and po-

loidal modes differ somewhat [Radoski, 1967]. This 

phenomenon, also known as polarization spectrum split-

ting [Guglielmi, 1970], is caused by inhomogeneous 

curvature of field lines [Krylov, Lifshitz, 1984; Leo-

novich, Mazur, 1990]. The field line curvature has been 

found to lead to slow propagation of Alfvén waves 

across magnetic shells, accompanied by the change of 

their polarization from poloidal to toroidal [Leonovich, 

Mazur, 1993; Leonovich et al., 2015]. The influence of 

azimuthal asymmetry effects on the Alfvén wave struc-

ture has been studied in [Klimushkin et al., 1995; Mager, 

Klimushkin, 2021; Elsden, Wright, 2022; Wright et al., 

2022]. 

Alfvén waves are often observed in regions of the 

magnetosphere with a considerable amount of hot plas-

ma: the ratio of plasma pressure to magnetic one β can 

be 0.5 and higher [Mager, 2021]. In a finite pressure 

plasma, the field line curvature causes Alfvén waves to 

connect with the slow magnetic sound (SMS) [South-

wood, Saunders, 1985; Walker, 1987; Mazur et al., 

2014]. Yet, the connection with SMS itself has little 

effect on Alfvén wave propagation since the characteris-

tic frequencies of SMS are much lower than those of the 

Alfvén mode [Agapitov et al., 2008]. It is much more 

important that the finite plasma pressure combined with 

the magnetic field inhomogeneity leads to a change in 

the dispersion relation of Alfvén waves, especially in 

the case of poloidal polarization [Safargaleev, Maltsev, 

1986]. The differential equation describing the structure 

of Alfvén waves in an inhomogeneous plasma has been 

derived in [Klimushkin et al., 2004]. 

Another consequence of the finite plasma pressure is 

the possibility of development of ballooning and flute 

(permutational) instabilities in magnetospheric plasma 

[Hameiri et al., 1991; Xing, Wolf, 2007; Cheremnykh, 

Parnowski, 2006; Mazur et al., 2012; Xia et al., 2017; 

Rubtsov et al., 2020]. In this paper, we consider the 

plasma stable with respect to oscillations of this type. 

The transverse structure of Alfvén waves at arbitrary 

azimuthal wave number m has been examined in 

[Klimushkin et al., 2004]. Also of great interest is the 

longitudinal structure of waves with different values of 

m and different wave polarization. Specifically, this is 

due to the fact that Alfvén waves play an important role 

in accelerating high-energy particles of the magneto-

sphere — particles of radiation belts and ring current. 

When moving in the geomagnetic field, a particle oscil-

lates along a field line (drift-bounce); therefore, calcu-

lating the interaction of waves and particles requires us 

to know the longitudinal wave structure. 

This paper examines the structure of Alfvén waves in a 

finite pressure plasma with arbitrary polarization. The em-

phasis is on the fundamental harmonic of the wave stand-

ing between ionospheres of conjugate hemispheres since 

for such waves the polarization splitting of the spectrum is 

most pronounced and they are regularly observed in exper-

iments [Dai et al., 2013; Mager et al., 2018; Takahashi et 

al., 2018a, b]. 

Sections 1 and 2 present the main relations deter-

mining the plasma equilibrium and the spatial structure 

of Alfvén waves. Section 3 delves into three magneto-

sphere models with different parameters of plasma pres-

sure distribution across magnetic shells. Section 4 dis-

cusses toroidal and poloidal eigenfrequencies for these 

three models. Section 5 addresses the inverse problem: 

the radial wave vector component for a given wave fre-

quency is found in the transverse WKB approximation. 

In addition, we numerically analyze the longitudinal 

structure of the main harmonic and electric and magnet-

ic field components for the three magnetosphere models 

as a function of the radial wave vector component. Sec-

tion 6 presents the main results of the work. 

 

1. EQUILIBRIUM 

We deal with a two-dimensional inhomogeneous 

model of the magnetosphere, where plasma is consid-

ered inhomogeneous both along magnetic field lines and 

across magnetic surfaces. First, let us introduce a curvi-

linear coordinate system {x
1
, x

2
, x

3
}, where the x

3
 coor-

dinate marks the position of a point on a field line, and 

the other two, x
1
 and x

2
, are radial and azimuthal coor-

dinates (to represent them, we use the McIlwain param-

eter x =𝐿 and the azimuthal angle x
2
=ϕ). The element of 

length along the i-th coordinate axis is expressed in 

terms of the increment of the coordinate x
i
: 

, 1, 2, 3,i

i idl g dx i    

where gi (x
1
, x

3
) are the diagonal components of metric 

tensor (the nondiagonal components are zero due to 

the orthogonality of the coordinate system). Determi-

nant of the metric tensor is g=g1g2g3. 

The equilibrium magnetic field 𝐵, the plasma pressure 

𝑃, and the current J are related by the hydromagnetic equi-

librium condition: 
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1

4
.

P
J

LB g

 



 (1) 

The paper explores the magnetospheric regions where 

the ratio of plasma pressure to magnetic one 

β=8π𝑃/𝐵2
<<1. Since the magnetic field strength increases 

strongly from the equator to the ionosphere, average β 

along the field line appears to be small even if at the 

equator this value is only slightly less than unity: 

β=8π𝑃/𝐵2
<1. Under these conditions, the magnetic field 

may be considered approximately dipole. Indeed, numer-

ical calculations of the equilibrium have revealed that in 

the inner magnetosphere (at L=5÷8) the finite pressure 

effects cause the magnetic field to deviate from the dipole 

only slightly [Xia et al., 2017]. 

In the spherical coordinate system r, the θ metric tensor 

components g1 and g2 are written as follows: 

2
2 6

1 22

cos
, cos .

1 3sin
g g L


  

 
 (2) 

The third metric tensor component g3 is expressed in 

terms of the length element along the field line: 

3 2

3 cos 1 3sin .dl g dx L d        

 

2. BASIC EQUATIONS DESCRIBING 

ALFVÉN WAVES IN THE DIPOLE MODEL 

OF THE MAGNETOSPHERE 

In an inhomogeneous plasma, three modes of MHD 

oscillations (Alfvén mode, fast (FMS) and slow (SMS) 

magnetic sounds) are interconnected. We, however, deal 

with azimuthally small-scale waves ( 1m ) when charac-

teristic frequencies of  FMS (at a given quasiclassical wave 

vector) are much higher than Alfvén ones. On the other 

hand, in plasma with β 1 , SMS frequencies, on the con-

trary, are much lower than Alfvén ones. Under these condi-

tions, the Alfvén mode may be considered separately from 

FMS and SMS. The electric field of an Alfvén wave is 

expressed as [Tamao, 1984; Klimushkin, 1994] 

,E     (3) 

where  is the nabla projection on the direction across 

the magnetic field; Φ is the scalar function, which we call 

the potential. 

The magnetosphere model is assumed to have an 

azimuthal symmetry, so the potential depends on time 

and azimuth as exp i(k2 x
2
–ω t), where k2=m is an azi-

muthal wave number, x
2
=ϕ is an azimuthal angle, ω is 

a wave frequency. Then, in the WKB radial coordinate 

approximation, the wave structure is described by the 

expression 

   1 1

1exp ,l i k x dx     

where k1 is the radial wave vector component, which is a 

function of the radial coordinate [Leonovich, Mazur, 

1993]. Note that the WKB approximation implies that the 

amplitude  1 3,x x  depends on the radial coordinate 

much weaker than the radial component of the wave 

vector. 

In the WKB approximation, the Ea and radial Er 

components of the Alfvén wave electric field, measured 

in the local Euclidean basis, are written as 

1 2
a r

1 2

, .
k k

E i E i
g g

       (4) 

Accordingly, the behavior of azimuthal and radial 

physical components of the magnetic field can be found 

from the following relations: 

a 2 r 1

2 1

1 1
, .

c c
B k B k

l lg g

 
  

   
 (5) 

In addition, when taking into account the final pres-

sure, the longitudinal magnetic field component proves 

to be linked to the Alfvén wave [Klimushkin et al., 

2004] 

2

1 2

1
,

2

ck
B

Kg g


 


 (6) 

where  

2 1

4
2 ,

P
K K

LB g

  
     

  

 (7) 

K is the local field line curvature 

 

2

3 2
2

3 1 sin
.

cos 1 3sin
K

L

 


  
 (8) 

The wave field of Alfvén modes can be described using 

the equation derived in [Klimushkin et al., 2004] from a 

system of linearized MHD equations: 

2
T P( ) ( ) 0,L L     κ  (9) 

where 2 2 2

1 2 ,k kκ  T P( ) and ( )L L   are toroidal and 

poloidal differential operators: 

2

2 2
T 2

1 1

2

1 1
P 2

2 2

ˆ ( ) ,

ˆ ( ) .

g g
L

l g l g A

g g
L

l g l g A

  
  

 

   
    

   

 (10) 

These operators define the longitudinal structure of to-

roidal and poloidal Alfvén modes. Note that the poloidal 

operator P
ˆ ( )L  has a component η, associated with plasma 

pressure and its gradient (7). Due to the high conductivity 

of ionospheric plasma, an Alfvén wave is reflected from 

the ionosphere, so the boundary condition for Equation (9) 

has the form 

 3 0.x   (11) 

 
3. NUMERICAL MODEL 

For the numerical calculation of the electric potential 

Φ, use the following pressure profile [Klimushkin et al., 

2004]: 

2 0
0 1 tanh ,

L L
P P

D

   
   

  
 (12) 
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where P0 is the maximum plasma pressure that is 

achieved on a magnetic shell L0=4; D characterizes the 

pressure profile width. The value P0 is given by the ratio 

of plasma pressure to magnetic one 

 2

00 8B  (B00=0.44 G) at the equator on the magnetic 

shell L0 representing the maximum plasma pressure. The 

plasma density is supposed to monotonically decrease 

with distance from Earth in accordance with the power 

law: 

3

0
0 .

r

r

 
    

 
 (13) 

We ignore the presence of the plasmapause here. 

We consider the values D and β0 to be two main pa-

rameters of magnetosphere models. In models 1 and 2, a 

change in the plasma pressure P across magnetic shells 

is relatively sharp, which corresponds to a small value 

of the parameter D (D=0.5 for model 1 and D=0.7 for 

model 2). On the contrary, in model 3 the pressure 

changes relatively smoothly (D=2). The equilibrium 

current J in the models is localized much more strongly 

than in model 3. In models 1 and 3, the parameter β0 is 

assumed to be the same, β0=0.105. In model 2, this param-

eter is taken to be β0=0.15. The distribution of the equatori-

al values of P, β, and J across magnetic shells is shown in 

Figure 1, a–c. Figure 1, d illustrates the distribution of η, 

included in the definition of poloidal operator (10). 

 

4. TOROIDAL 

AND POLOIDAL FREQUENCIES 

AND EIGENFUNCTIONS 

To begin with, consider problem (9) as an 

eigenproblem with respect to the wave frequency ω at 

a fixed value of 𝜅2
. Examine two extreme cases: 

𝜅2
→∞ and 𝜅2

→0. In the former case, the Alfvén 

wave is called toroidal (
r a ,E E r aB B ); in the 

latter, poloidal (
r a ,E E r aB B ). 

In the former case, Equation (9) is as follows 

T ( ) 0L     (14) 

with boundary condition (11). Call the eigenfrequencies 

ΩTN toroidal (here N is a longitudinal wave number). The 

toroidal eigenfrequencies depend on the radial coordinate 

x
1
 as on a parameter. If the wave frequency ω is set by an 

external source, Equation (14) can be solved only on the 

magnetic surface, where the equality ω= Ω TN(x
 1

) holds. 

We refer to this surface as toroidal and denote it by 
1

T .Nx Name the eigenfunctions TN(x
1
, x

3
) of (14), (11) the 

toroidal eigenfunctions. To normalize these functions, use 

the following condition: the maximum value of TN(x
1
, x

3
) 

along the field line is equal to 1. 

In the latter extreme case, 𝜅=0, the solution of Equa-

tion (9) is determined by the addend 

P ( ) 0L      (15) 

with boundary condition (11). The eigenfrequencies in 

this equation ΩPN are referred to as poloidal. They de-

pend on the radial coordinate x
1
 as on a parameter. At 

the wave frequency ω, Equation (15) can be solved only 

on the magnetic surface, where the equality ω=Ω P N(x
 1

) 

holds. We will denote this surface the poloidal surface 

and designate it as 
1

P
.

N
x  

Call the eigenfunctions PN(x
1
, x

3
) of (15), (11) poloi 

dal. To normalize these functions, use the following 

condition: the maximum value of PN(x
1
, x

3
) along the 

field line is equal to 1. 

 

 

Figure 1. Plasma pressure profiles 𝑃 (a), parameter β (b), ring current J (c), and η (d) 
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In most of the magnetosphere (except for the regions 

near the plasmapause whose existence we ignore), the 

eigenfrequencies ΩPN and Ω TN decrease with increasing 

L shell. Numerical solutions of (14) and (15) show that 

in the model with cold plasma β=0 the poloidal frequency 

is always lower than the toroidal one: 1 1

P TN Nx x [Cum-

mings et al., 1969; Leonovich, Mazur, 1993].  

Radial profiles of the eigenfrequencies in models 1–3 

are presented in Figure 2. It is apparent that when taking 

into account the plasma pressure and its gradient, both var-

iants are possible: ΩP<ΩT and ΩP>ΩT. Hence, when con-

sidering the final pressure, the poloidal surface, compared 

to the toroidal one, can be both closer to Earth and farther 

from it. Of particular attention is the minimum of the po-

loidal frequency in model 1 with β0=0.105, D=0.5, caused 

by the ring current due to a negative pressure gradient. In 

all the models considered, squares of the eigenfrequencies 

are positive, i.e. the assumption that there is no hydromag-

netic instability (ballooning or permutational) is valid. 

 

5. VARIATION IN THE SPATIAL 

STRUCTURE OF ALFVÉN WAVES  

WITH DISTANCE IN THE TRANSVERSE  

WKB APPROXIMATION 

Now let us tackle eigenproblem (9) with respect to 
2 2 2

1 2k kκ at a fixed wave frequency [Leonovich, Ma-

zur, 1993]. The numerical calculations are made for two 

frequency values: ω=0.033 and 0.018 rad/s. We deal 

only with the fundamental harmonic (N=1). For each 

given frequency, the value 𝜅 is a function of the radial 

coordinate x
1
. The wave propagation region (transparent 

region) corresponds to 𝜅2
>0. On the poloidal surface 

1

PNx , the eigenvalue 𝜅2
=0; near the toroidal surface 1

TNx , 

𝜅2∞. The corresponding points along the radial coor-

dinate are called reflection and resonance points respec-

tively. On the poloidal and toroidal surfaces, the eigen-

function ΦN of Equation (9) coincides with the poloidal 

PN and toroidal T N eigenfunctions of Equations (14) and 

(15). At intermediate values of 𝜅, i.e. on the magnetic 

surfaces lying in the gap between the poloidal and to-

roidal surfaces, the longitudinal structure of harmonics 

ΦN gradually changes from poloidal to toroidal. 

 

5.1. Model 1 

The behavior of 𝜅2
(x

1
) of model 1 at a frequency ω 

=0.033 rad/ s is illustrated in Figure 3. The transparent 

region is seen to be limited by the points of reflection 

(poloidal surface 1

PNx ) and resonance (toroidal sur-

face 1

TNx ), with 1 1

P T .N Nx x  

The transparent region (𝜅2
>0) in this case becomes 

wider by ~0.35 RE (see Figure 2). In most of the trans-

parent region, the 𝜅2
(x

1
) dependence is more smooth 

than in cold plasma [Leonovich, Mazur, 1993]. This 

leads to some difference in the longitudinal structure of 

harmonics ΦN: the structure changes from poloidal to 

toroidal in a more uneven way (Figure 4, a, b). 

 

 

Figure 2. Toroidal and poloidal eigenfrequencies ΩTN,PN as a function of L for the fundamental harmonic of the standing 

wave (N  =1). In cold plasma (β=0), the poloidal frequency (blue curve) is always lower than the toroidal one (black curve). In 

models 1 and 2, the poloidal frequency is also lower than the toroidal one (red dash-dot and dashed lines). In model 3, the poloi-

dal frequency (red dotted line) becomes higher than the toroidal one. Horizontal and vertical dashed lines indicate the position of 

the frequencies Ω=0.033 and Ω=0.018 rad/s with respect to their coordinates 
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Figure 3. 𝜅2 as a function of L at β0 =0.105 and D=0.5  with wave frequencies ω=0.033 (left) and ω=0.018 (right) rad/s 

for model 1 

 

 

Figure 4. The Alfvén wave harmonic structure (panel 𝑎) as a function of the magnetic latitude θ between magnetic shells in 

the transparent region of wave 𝜅2 >0 for the cold plasma model (panel 𝑎) and model 1 (panel b) at a frequency ω=0.033 rad/s. 

Azimuthal (panel b) and radial (panel d) electric field components on the poloidal (red dashed line) and toroidal (black dotted 

line) shells of model 1 
 

Referring to Figure 4, b (red dashed curve), in model 

1 the azimuthal electric field component Ea near the 

toroidal surface differs from the poloidal one in that it 

gradually forms a deep minimum. The radial field com-

ponent Er has a minimum near the poloidal surface, and 

a maximum on the toroidal surface (Figure 4, d, black 

dotted line). Of special interest is the behavior of the 

compression component of the magnetic field B: it 

sharply nonmonotonically depends on the longitudinal 

coordinate, although it does not change sign (see Figure 5). 

Interesting features arise at a frequency ω=0.018 

rad/s (see Figure 3): the dependence 𝜅2
(x

1
) becomes 

nonmonotonic, due to which an additional transparent 

region with a width of ~0.5 RE, bounded by two transi-

tion points with 𝜅2
=0, appears.  In this region, the Alf-

vén wave forms a transverse resonator, where the mode 

is stationary along the field line and across magnetic 

shells, but propagates along the azimuth [Klimushkin et 

al., 2004]. 

5.2. Model 2 

If in cold plasma and in model 1 the poloidal surface 

was located closer to Earth than the toroidal one, in 

model 2 the situation becomes the opposite: the poloidal 
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surface is located farther from Earth (see Figure 2, red 

dashed line). The cause is a negative gradient of plasma 

pressure and a rather small value of β. The behavior of 

the harmonics ΦN and the components of electric and 

magnetic fields, therefore, differs slightly from model 1 

in this case. A characteristic difference for this model is, 

however, the change of the sign of the longitudinal 

magnetic field component along the field line in the 

vicinity of the equator near the poloidal surface (Figure 5, 

red dashed curve). 

5.3. Model 3 

As for magnetosphere model 3, its maximum value β 

is much greater than that in models 1 and 2. In this case, 

the poloidal surface is located farther than the toroidal 

one. The transverse behavior of 𝜅2
 looks, therefore, as 

shown in Figure 6, left. Due to the large curvature of 

field lines near the equator and the large value of β, an 

Alfvén wave opacity area appears near the poloidal sur-

face along field lines in the equatorial part of the mag-

netosphere (Figure 6, right). 

Because of this, the wave processes in the Northern 

and Southern hemispheres are weakly interconnected. 

The possibility of formation of an opacity area along the 

field line for a poloidal Alfvén wave was first shown in 

[Mager et al., 2009] and then confirmed in [Mazur et al., 

2012; Leonovich, Kozlov, 2013]. A consequence of the 

nonmonotonic behavior of the potential Φ along the 

field line is the nonmonotonic behavior of the transverse 

components of the magnetic field of the wave (Figure 7, 

a–d): these components have not one (equatorial) node, 

as in cold plasma and models 1 and 2, but three nodes. 

Attention is also drawn to the sharp peak of the longitu-

dinal component of the magnetic field of the wave near 

the equator and the change of its sign along the field 

line (Figure 5). 

 

CONCLUSIONS 

Here are the main results we obtained. 

1. We have addressed an eigenproblem with re-

spect to the wave frequency for the equation describing 

the wave structure of Alfvén modes [Klimushkin et al., 

2004] in two extreme cases: 𝜅→∞ and 𝜅→0 corre-

sponding to toroidal and poloidal modes. A pressure 

increase on this magnetic shell was shown to cause the 

poloidal frequency to increase, while an increase in the 

pressure gradient contributes to its decrease. 

 

Figure 5. Changes of the parallel magnetic field component structure in θ for models 1–3 at ω=0.033 rad/s 

 

 

Figure 6. 𝜅2 as a function of L (left) and the Alfvén wave harmonic structure (right) versus the magnetic latitude θ between mag-

netic shells in the transparent region of wave 𝜅2>0 at β0=0.105 and D=2 for model 3 with a fixed wave frequency ω=0.033 rad/s 
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Figure 7. Changes of the structure of azimuthal and radial magnetic field components in θ for models 1 (panels a, b) and 3 (pan-

els c, d) 
 

2. We have solved the eigenproblem with respect 

to 𝜅 at a fixed wave frequency. We have identified the 

transparent region of the wave, where 𝜅2
>0. When mov-

ing across magnetic shells from the poloidal surface 

(where 𝜅= 0) to the toroidal one (where 𝜅=∞), the wave 

changes its polarization from poloidal to toroidal. We 

have determined radial coordinates of the wave transi-

tion point (the poloidal surface where 𝜅=0) in different 

magnetosphere models. We have shown that in models 

1 and 2, the poloidal surface is located closer to Earth 

than the toroidal one; in the former case, the transparent 

region is several times wider than in the latter one. In 

model 3, the poloidal surface is located farther from 

Earth than the toroidal one. 

3. We have established that with a sharp trans-

verse localization of the equilibrium current the poloidal 

frequency has a minimum at a certain value of L. There 

may be a transverse Alfvén wave resonator near the 

minimum of the function Ω PN(L). We have examined 

the longitudinal structure of the wave on different mag-

netic shells inside the transparent region corresponding 

to different wave polarization. Due to the large curva-

ture of field lines and the parameter β in model 3, a min-

imum in the fundamental Alfvén wave harmonic ap-

pears in the vicinity of the equator [Mager et al., 2009]. 

The magnetic field of the wave in model 3 has three 

nodes, not one as in models 1 and 2. In models 2 and 3, 

the longitudinal component of the wave magnetic field 

changes sign along the field line. 

The work was financially supported by the Ministry of 

Science and Higher Education of the Russian Federation. 
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