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Abstract. The paper reviews the current state of the 

problem of interaction between long-period ultra-low-

frequency (ULF) waves and high-energy particles. We 

consider elements of the theory of energy exchange 

between waves and particles, particle transport across 

magnetic shells under the influence of the electromagnetic 

field of a wave, the acceleration of radiation belt particles 

by both resonant and non-resonant mechanisms. We 

examine the mechanisms of generation of azimuthally-

small-scale ULF waves due to instabilities arising from the 

wave–particle resonance. The cases of Alfvén, drift-

compressional, and drift-mirror waves are analyzed. It is 

noted that due to the lack of a detailed theory of drift- 

mirror modes, the possibility of their existence in the 

magnetosphere cannot be taken as a proven fact. We 

summarize experimental data on the poloidal and 

compression ULF waves generated by unstable 

populations of high-energy particles. We investigate the 

mechanisms of modulation of energetic particle fluxes by 

ULF waves and possible observational manifestations of 

such modulation. Methods of studying the structure of 

waves across magnetic shells by recording fluxes of 

resonant particles with a finite Larmor radius are discussed. 

Keywords: ULF waves, wave—particle 

interaction, radiation belts, plasma instabilities. 
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INTRODUCTION 

Ultra-low-frequency (ULF) waves, or geomagnetic 

pulsations, are oscillations in Earth's magnetosphere with 

frequencies of order or lower than the proton 

gyrofrequency (from millihertz to several hertz). The ULF 

waves are divided into two large branches: short-period 

(Pcl–2, Pil; frequencies from 5 to 0.1 Hz) and long-period 

(Pc3–5. Pi2–3; from 0.1 Hz to 1 MHz). In this review, we 

deal with the long-period ULF waves whose characteristic 

feature is a wavelength comparable in order of magnitude 

to the length of the magnetic field line. Below this 

frequency range are magnetic bays — aperiodic magnetic 

disturbances accompanying substorms. 

The long-period ULF waves are divided into three 

types from an observational point of view: toroidal, 

poloidal, and compressional. The toroidal ULF waves 

are geomagnetic field line oscillations in the azimuthal 

direction (Figure 1, left panel). In this case, the electric 

field oscillates mainly in the radial direction. In the 

poloidal ULF waves, geomagnetic field lines generally 

oscillate in the radial (meridional) direction (Figure 1, 

right panel). In this case, the electric field fluctuations 

occur along the azimuth. The magnetic field magnitude 

practically does not change in toroidal and poloidal 

waves. On the contrary, in compressional waves the 

magnetic field absolute value oscillates. This means that 

there is a significant parallel component of the magnetic 

field disturbance.  

ULF waves are also divided into azimuthally large-

scale and small-scale (azimuthal wave numbers m~1 

and m>>1 respectively). Toroidal waves are mainly 

azimuthally large-scale; poloidal ones, azimuthally 

small-scale. ULF waves also have different generation 

mechanisms: the sources of large-scale waves are 

associated with the solar wind, the sources of small-

scale waves are located inside the magnetosphere. 

Azimuthally mean-scale oscillations are also often 

introduced (m≃10) recently [Yeoman et al., 2010; Hao 

et al., 2014; Mager et al., 2019]. This case has been 

relatively little studied so far. The azimuthal wave 

number sign is also of great importance. Waves with 

m>0 propagate in the magnetosphere to the east, in the 

electron drift direction; waves with m<0, to the west, in 

the proton drift direction. 

 

Figure 1. Toroidal and poloidal oscillations of field lines. 

The main and second harmonics are shown (N=1 and N=2 

respectively) 

Approximately 90 % of azimuthally small-scale waves 

have negative azimuthal wave numbers [Chelpanov et 

al., 2019]. 

From the physical point of view, both toroidal and 

poloidal oscillations are identified with Alfvén waves 

standing along the magnetic field line between 

magnetically conjugated ionosphere points [Dungey, 

1954; Radoski, 1967]. Among the compressional waves, 

there can be both fast and slow magnetosonic MHD 

waves, as well as the modes of the kinetic nature, like 

drift-compressional or drift-mirror modes. 

Already in the early 1960s, an opinion was stated 

that ULF waves can play a crucial role in the dynamics 

of high-energy particles in the magnetosphere (radiation 

belt and ring current particles) [Dungey, 1964]. The 

waves can accelerate particles, transport them across 

magnetic shells, transfer them to a loss cone, and 

thereby contribute to their disappearance from the 

magnetosphere. In the late 60s – early 70s, the 

possibility of a reverse influence was discovered: high-

energy particle populations can generate waves through 

various plasma instabilities [Southwood et al., 1969; 

Hasegawa, 1969; Mikhailovskii and Pokhotelov, 1975]. 

It is often assumed that plasma instabilities are 

responsible for the generation of azimuthally small-

scale ULF waves. 

The interaction between ULF waves and particles 

was the subject of several large reviews, which dealt 

with both the general state of the problem [Dungey, 

1964; Southwood, 1980; Tamao, 1984a; Zong et al., 

2017] and the role of ULF waves in the acceleration of 

radiation belt particles [Elkington, 2006; Shprits et al., 

2008; Mann et al., 2012; Elkington and Sarris, 2016; 

Potapov, 2017; Lejosne and Kollmann, 2020]. The 

overview of the role of interaction with particles in the 

generation of higher frequency waves (whistlers, ion-

cyclotron waves) is presented in [Tsurutani and 

Lakhina, 1997; Demekhov, 2007; Trakhtengerts and 

Rycroft, 2008]. The influence of nonlinear effects, 

including those associated with the wave-particle 

interaction, on short-period ULF wave propagation has 

been examined in [Guglielmi and Potapov, 2021]. 

In this review, we delve into the current state of the 

problem of the interaction between long-period ULF 

waves and particles. We address both the problem of 

particle acceleration by waves and the problem of wave 

generation by particles. The material is presented in a 

form accessible to the early career researcher. 

The structure of the review is as follows. Section 1 

addresses general problems of the wave-particle 

interaction theory: growth of drift-bounce and drift 

resonances, movement of a particle transversely to 

magnetic shells under the action of the wave's 

electromagnetic field, the dynamics of near-equatorial 

particles. Section 2 discusses the main ideas that explain 

the role of ULF waves in accelerating radiation belt 

particles, including "killer electrons" with relativistic 

energies. Section 3 describes the ULF wave theory's 

main results, especially for waves with large azimuthal 

wave numbers, which are generated due to interaction 

with particles. The theory of long-period ULF wave 
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generation due to plasma instabilities associated with 

energy transfer from high-energy particles is described 

in Section 4. Section 5 deals with azimuthally small-

scale waves, generated by particles, from an 

experimental point of view. Theoretical and 

experimental problems of particle fluxes modulation by 

ULF waves are explored in Section 6. In conclusion, the 

main results of our review are outlined. 

 

1. ELEMENTS OF THEORY 
 

1.1. Motion of particles in the geomagnetic 

field 

At first, it makes sense to review the basics of the 

theory of charged particle motion in Earth's magnetosphere 

[Zelenyi et al., 2010; Trakhtengerts and Rycroft, 2008]. 

Motion of a particle in the inhomogeneous magnetic field 

can be decomposed into two components: gyration about a 

magnetic field line and guiding center motion, i.e. the 

motion of the center of rotation (Figure 2). The guiding 

center approximation applies if (1) a characteristic spatial 

scale of plasma or magnetic field inhomogeneity is 

considerably larger than particle's Larmor radius and (2) a 

characteristic time scale of changes in plasma and field 

parameters is longer than the period of rotation of a particle 

around a field line (gyroperiod). A gyration about a field 

line is a circular motion with a gyrofrequency (cyclotron 

frequency) 

c .
qB

Mc
   (1) 

Here, q and M are particle charge and mass, В is the 

magnetic field, с is the speed of light. In the projection 

onto a plane perpendicular to a field line, a trajectory of 

a particle is a circle with a Larmor radius: 

L ,
Mc

r
qB

  (2) 

where   is a component of the particle velocity 

normal to the field line. The directions of electron and 

ion cyclotron rotation are opposite. 

The guiding center motion equation is: 

1dV q
E V B B

dt M c M

 
     

 
 (3) 

 

[Northrop, 1963]. The guiding center velocity V  

consists of two components: oscillations along a field 

line and a drift in the azimuthal direction, d .V u   

 

Figure 2. Motion of particles in the geomagnetic field 

While a guiding center moves in a stationary-magnetic 

field, four parameters remain constant: kinetic particle 

energy 2 / 2M   (hereafter, the particle energy 

denotes its kinetic energy) and three adiabatic 

invariants. The first adiabatic invariant is the magnetic 

moment of a particle 

2

.
2

M

B

   (4) 

The expression for the longitudinal velocity of 

particle follows from the conservation of energy and the 

magnetic moment: 

 
2

.B
M

    (5) 

The second (longitudinal) adiabatic invariant is 

defined by the integral 

2

1

2 .
l

l
J M dl   (6) 

The total magnetic flux enclosed by a drift trajectory 

of a particle is the third adiabatic invariant: 

,B dS    (7) 

where dS is a differential of an area within a particle's 

drift trajectory. 

The motion along a field line is oscillatory. Its 

period (bounce period) is 

2

1
b 2 .

l

l

dl
    (8) 

Here, l is the trajectory length along a field line, l1,2 are 

coordinates of its turning points (mirror points). The 

frequency of oscillations along a field line (bounce 

frequency) is defined by the expression 

b

b

2
.


 


 (9) 

In a dipole magnetic field, the bounce period is 

calculated using the approximate relation 

 b 0

4
1.30 0.56sin ,

L
     (10) 

[Hamlin et al., 1961], where  is the absolute value of 

the particle velocity, L is the distance from Earth's 

center to a point where a field line crosses the 

geomagnetic equator (measured in Earth's radii, RE this 

is the McIlwain parameter), α0 is the equatorial pitch 

angle of a particle (the angle between the velocity and 

the magnetic field at the equator). 

The azimuthal drift is caused by two reasons: 

inhomogeneity of the magnetic field and field line 

curvature. The total drift velocity is 

2

2

d

c

1
,

2

B
u

B R




 
  

   

 (11) 

where R is the local radius of field line curvature, ⊥  

denotes the differential operator  projection onto a line 

perpendicular to the magnetic field (⊥ B is scalar; in 

the magnetosphere typically ⊥ B<0). Positive ions drift 
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westward, and electrons drift eastward (clockwise and 

counterclockwise, respectively, viewed from the 

geomagnetic north pole). The electric field in the 

magnetosphere also induces drift motion: 

2
,E

E B
u c

B


  (12) 

However, it is insignificant for high-energy particles, 

and we will not take it into account (although it will 

play an essential role in the study of the particle 

dynamics in the electromagnetic wave field). 

The angular frequency of the magnetic drift is 

defined by the relation 

d
d ,

cos

u

r
 


 (13) 

where r is the distance from Earth's center,  is the 

geomagnetic latitude measured from the geomagnetic 

equator. In the theory, the drift frequency averaged over 

the bounce period is a highly significant parameter: 

2

1
d d

b

1
.

l

l

dl
  

 
 (14) 

In a dipole magnetic field, this parameter is calculated 

using the approximate relation 

 
2

d 02

c,eq

3
0.35 0.15sin ,

L
    


 (15) 

where ωс,eq is the cyclotron frequency at the equator at a 

given magnetic shell [Hamlin et al., 1961]. The electron 

drift direction is chosen as the positive drift direction (to 

the east); for electrons ωc<0. 

 

1.2. Wave—particle energy exchange 

Due to the interaction with the electromagnetic field, 

the instantaneous particle energy changes over time as 

.
d

q E
dt


   (16) 

Frequencies of ULF waves are much lower than the 

gyrofrequency of protons. Therefore, relation (16) must 

be averaged over the gyroperiod. The resulting relation 

is [Northrop, 1963]: 

d .
d B

q E qu E
dt t



 
    


  (17) 

Here, the angle brackets denote averaging over the 

gyroperiod. Hereafter, we will omit the angle brackets 

for this parameter, i.e. ε denotes particle energy 

averaged over the gyroperiod. 

The absolute value of the magnetic field is 

 
2

0 1 ,B B B   (where В0 is the ambient magnetic 

field, and В1 is the magnetic field of a wave (hereafter, 

the “1” index is omitted for wave parameters). 

Linearizing this relation with В1<<В0 

reveals
2

0 0 1 02 ,B B B B B B   where the second 

term means the longitudinal (compressional) component 

of the wave magnetic field. Assuming the external field 

to be stationary, (17) can be transformed in: 

d a .
Bd

q E qu E
dt t


  


 (18) 

The second term implies that the drift occurs in the 

azimuthal direction such that of the transverse electric 

field components, only the azimuthal one Еа contributes 

to the energy change. 

Since a particle moves in the alternating 

electromagnetic field of a wave, it gains energy on a 

part of its trajectory and loses it on another part. We will 

consider monochromatic waves for which the following 

relations apply: 

, exp ( ),E B i m t   (19) 

where ω is the wave frequency, m is the azimuthal wave 

number, φ is the azimuthal angle. A continuous increase 

or decrease in energy is only possible when a moving 

particle constantly “sees” field of the same sign. In the 

case of long-period ULF waves, with ωωс, energy 

exchange is defined by relation (18), and the drift-

bounce resonance condition is required [Dungey, 1964]: 

d b 0,m K      (20) 

where K is an integer. The K=0 condition results in the 

drift resonance: 

d 0.m    (21) 

Note that at higher frequencies the wave—particle 

resonance condition is c 0,k n     where k  is 

the longitudinal component of the wave vector and n is 
an integer (e.g. [Trakhtengerts and Rycroft, 2008]). 

To study wave—particle interaction, it is important to 
know the wave structure along a field line. The main 
parameter of this structure is the parallel wave number N 
representing a number of nodes in the wave magnetic 
field. Nodes of the magnetic field correspond to antinodes 
of the electric field. Thus, the fundamental harmonic 
(N=1) has only one magnetic field node located at the 
equator. Accordingly, the electric field of a wave with 
(N=2) has an antinode there (Figure 3). The second 
harmonic (N=3) features a magnetic field antinode and an 
electric field node at the equator. ULF waves exchange 
energy with particles mainly through a transverse electric 
field E⊥. Therefore, particles drifting near the equator 
(equatorial pitch angle α0≈90°) can be in resonance with 
the fundamental harmonic, but not with the second one. 
Such particles can neither gain energy from a second 
harmonic wave nor generate it through any instability A 
resonance with the fundamental harmonic is the drift 
resonance (bounce harmonic K=0). 

Following [Southwood and Kivelson, 1982], the 
drift-bounce resonance condition for various harmonics 
of the standing wave can be demonstrated in a graphic 
way. In a reference frame moving with the wave at an 
angular velocity ω/m relative to Earth, the wave electric 
field is stationary. If resonance condition (20) is satisfied, 
a particle moves from the region of the strong 
accelerating field of one half-wave to the region of the 
strong accelerating field of the other half-wave. 
Concurrently, it either moves through regions of a 
decelerating field where its amplitude is weak or 
completely bypass them. For example, in the case of the 
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Figure 3. Magnetic and electric fields of the two main 

harmonics of the Alfvén wave 

 

fundamental harmonic of a standing wave N=1 and the 

second bounce harmonic K=2 (Figure 4, a), a particle 

first crosses the equator in the area of the first half-

wave. It is accelerated efficiently there. Then it moves 

through the near-ionospheric region of the next half-

wave, where the electric field is decelerating, but weak. 

Thus, as a particle passes these two half-waves, its 

resulting acceleration is positive. Obviously, in passing 

the next pair of half-waves, a particle also accelerates, 

and so on. The case of N=1, K=2 differs from the 

previous one only in the proton's direction of motion in 

the wave rest frame (Figure 4, b). In the case of the 

second harmonic and the first bounce harmonic, a 

particle moves through half-waves with a strong 

accelerating field and practically avoids the decelerating 

field regions (Figure 4, c). If the parameters N=2 and 

K=2, a particle experiences acceleration while passing 

two half-waves successively before being decelerated in 

the electric field of an opposite sign while passing another 

two successive half-waves. As a result, its averaged energy 

is constant (Figure 4, d). Thus, although the resonance  

 

Figure 4. Drift bounce resonance for symmetric and antisymmetric modes with K=1, 2 (in the wave rest frame). Pluses 

represent a westward wave electric field, and minuses indicate an eastward field. The number of pluses or minuses in a horizontal 

row denotes a field magnitude. The red and green lines show accelerating and decelerating protons’ trajectories respectively. The 

blue line is a trajectory of a proton with a constant averaged energy 

 

condition is satisfied, there is generally no interaction 

between a particle and a wave. The drift resonance occurs 

when a particle does not leave a region of strong 

accelerating field of the same half-wave (Figure 5). 

Since the drift and bounce frequencies are 

proportional to ε and  respectively, relation (20) can 

be interpreted as a quadratic equation with respect to the 

square root of the particle energy. Its solution is the 

value of the resonant energy of a particle εres, i.e. the 

energy at which a particle can be in the drift-bounce 

resonance with a wave at given ω, m, K, and α0. The 

dependences of the resonance energy on the wave 

frequency ω and the azimuthal wave number m are 

shown in Figures 6 and 7. Equation (20) has two solutions 

 

Figure 5. Drift resonance (in the wave rest frame). 

Designations are the same as in Figure 4 
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Figure 6. Dependence of the proton resonance energy on the wave frequency for two pitch angle values. Drift resonance (left); 

drift-bounce-resonance ( 1K   ) (right). Magnetic shell L=6.6RE, azimuthal wave number m=−60 

 

 
Figure 7. Dependence of the proton resonance energy on the azimuthal wave number for two pitch angle values. Drift 

resonance (left); drift-bounce resonance (K= ±1) (right). Magnetic shell L= 6.6RE, wave period 100 s (Pc4 range) 

 

in the case of drift-bounce resonance. Note that for 

electrons only drift resonance is possible: their mass is 

small, and for Pc4–5 range frequencies (20) has a 

solution only for K=0.  

 

1.3. Particle transport across magnetic shells 

The interaction with a wave results not only in an 
increase or decrease in the particle energy, but also in 
the motion of a particle across magnetic shells. 
Linearizing expression for the guiding center velocity 
(3) reveals a radial component of the particle drift 

velocity. It is determined by the wave electric E  and 

magnetic B  fields: 

a r
dr a

0 0 0

,
E B c

u c ik B
B B qB


     (22) 

where ka is the azimuthal component of the wave vector 
(ka=m /L at the equator) [Southwood, 1973,1976]. Here, 
the first term is the electric drift of a particle δuE caused by 
the azimuthal component Ea of the electric field of a wave. 
Electric drift can be interpreted as a movement of a field 
line [Longmire, 1963]. With the radial displacement of the 
field line denoted as ξr, the electric drift of a particle is 

.r
Eu i

t


    


 (23) 

The second term in (22) is related to a change in the 

slant of a field line in the meridional direction caused by 

the radial component of the wave magnetic field Br 

[Dungey, 1964] (Figure 8). The third term is a particle 

gradient drift velocity fluctuation associated with variations 

in the magnetic field absolute value in a wave. 

Straightforward yet tedious calculations transform 

(22) into a relation for the rate of change of the particle's 

McIlwain parameter: 

 
eq

r

dL d m c d
L

dt dt qB L dt


   


 (24) 

 

Figure 8. Radial motion of a particle due to a change in 

the slant of magnetic field lines 
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[Southwood, 1973, 1976]. Here, Beq is the value of the 

magnetic field at the equator at a given magnetic shell. 

Due to the conservation of the first and second 

adiabatic invariants μ, J, the energy of a particle moving 

toward Earth increases. A shift in the magnetic shell 

number by δL results in an energy change 

eq

d

qB L
L

c
     (25) 

[Southwood, 1972]. For ions 
d 0  , and for electrons 

d 0  , q<0. Thus, the earthward movement of a 

particle (δL<0) causes an increase in its energy 

regardless of its charge's sign. 

 

1.4 Dynamics of a near-equatorial particle in 

the field of an Alfvén wave 

An important case of wave–particle interaction is the 

motion of a near-equatorial particle (pitch angle, the 

second adiabatic invariant in the electromagnetic field 

of an Alfvén wave). In this case, the longitudinal  

velocity of a particle is insignificant ( 0 ), and all 

the particle energy is accumulated in a gyration around 

a field line: 2 / 2.M      

The system of equations for near-equatorial particle 

motion in polar coordinates is 

a

0

,
Edr c B

dt B qrB

 
 


 (26) 

r

0

.
Ed c B

dt B qrB r

  
  


 (27) 

Since in the Alfvén wave parallel components of the 

electric and magnetic fields are small ( 0, 0E B ), 

the main contribution to the change in the particle 

energy is made by the transverse electric field: 

d a .
d

qu E
dt


  (28) 

This formula can be given an alternative 

interpretation. Due to the presence of the azimuthal 

component of the electric field Ea, an electric drift in the 

radial direction occurs with the velocity a 0/ .r cE B  

During a time period δt, a particle is transported over a 

distance  a 0/r c E B t    across magnetic shells. At a 

new particle location, the magnetic field differs by 

0B B r    (here the prime means the derivative across 

a magnetic shell). During this drift, the first adiabatic 

invariant 0/ B    is preserved. Then from the 

μ=const condition it follows that the energy of the 

transverse motion changed by .B    Substituting 

δB and applying relation for the drift in an inhomogeneous 

magnetic field (11) at 0,  can yield (28). 

Following [Southwood and Kivelson, 1981], we 
discuss an approximate solution of (28). Let the 
amplitude of the electric field be defined by (19). The 
particle is located at a point with the azimuthal angle φ. 
The drift frequency ωd of a particle oscillating near the 

equator is constant; hence d 0 ,t    where φ0 is the 

initial azimuthal angle of a particle. Then relation (28) 
becomes 

d 0( )

0 d ,
i m t imd

qE r e
dt

    
   (29) 

where E0 is the amplitude of a wave. The solution to this 

equation is 

d 0( )

0 d

d

1 .
i m t imi

qE r e e
m

         
 (30) 

As we can see, if ω and mωd do not coincide, the 

energy fluctuates around ε0. Otherwise, a secular 

increase or decrease in energy occurs: 

0
0 d .

im
qE r e t


    (31) 

Thus, a continuous transfer of energy from a wave to 

an equatorial particle, or vice versa, can take place only 

if drift resonance condition (21) is satisfied. 

However, as a result of gaining energy, the particle 

drift velocity increases, therefore a particle moves faster 

than a wave. It relocates from a region of the 

accelerating electric field to a region of the decelerating 

one. The particle loses energy there, which results in a 

drift velocity decrease, passing back into the region of 

the accelerating field. Thus, the wave energy fluctuates 

even in the drift resonance with particles. Since, as it is 

shown above, any change in energy is associated with 

particle motion across magnetic shells, a particle also 

oscillates in the radial direction. Yet, the resulting 

acceleration can be non-zero since in reality a wave has 

a limited duration and a finite spatial extent (as a wave 

packet). This may be due to both dissipation and the 

finite time of generation by a wave source and its spatial 

localization. The dynamics of a near-equatorial particle 

has been considered in [Degeling et al., 2007, 2008; 

Gubar', 2010]. 

 

2. THE ROLE OF ULF WAVES  

IN THE ACCELERATION  

OF RADIATION BELT PARTICLES 

The wave-particles interaction theory plays an 

especially important role in the study of radiation belt 

dynamics. As is known, the outer radiation belt consists 

of relativistic electrons with energy up to several MeV 

(1 MeV energy electron has a velocity of 0.86c). These 

electrons are often called killer electrons due to their 

ability to damage orbiting spacecraft [Baker et al., 1987; 

Baker, 2001; Romanova et al., 2005]. The appearance of 

such electrons is one of the magnetospheric storms 

manifestations. Nonetheless, the betatron acceleration 

associated with a sharp storm time magnetic field 

change is not a fundamental factor for strengthening the 

killer electron flows [Pilipenko et al., 2017]. At the turn 

of the XX and XXI centuries, the first experimental data 

appeared which indicated that relativistic electron huge 

energies can be due to ULF waves. Rostoker et al. 

[1998] and Baker et al. [1998] showed that an increase 

in relativistic electron fluxes during high geomagnetic 

activity intervals was preceded by the appearance of 

large amplitude ULF waves. The relations between 
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increasing electron fluxes and ULF waves were also 

demonstrated in statistical studies [Mathie and Mann, 

2000, 2001; Degtyarev et al., 2009]. Moreover, a new 

geomagnetic index for estimating the magnetosphere 

disturbance by ULF waves was proposed [Kozyreva et 

al., 2007; Romanova and Pilipenko, 2009]. 

Even at relatively low energies, electron velocities 

are very high due to their low mass. For this reason, the 

electron bounce frequency is much higher than their 

drift frequency. This means that drift-bounce resonance 

condition (20) can only be satisfied for a zero bounce 

harmonic ( K =0). Thus, ULF waves can interact with 

electrons only in the drift resonance. For the energies 

characteristic of the outer radiation belt electrons (from 

several hundred kiloelectronvolt to several 

megaelectronvolt), drift resonance condition (21) can 

hold only for relatively low azimuthal wave numbers: 

m<10 for the Pc5 frequency range. This means that the 

waves responsible for the killer electron acceleration 

should have an external origin associated with the solar 

wind, like the solar wind dynamic pressure impulses 

[Potapov, 2013; Foster et al., 2015] and the Kelvin-

Helmholtz instability [Mathie and Mann, 2001]. Such 

waves can also penetrate directly from the solar wind 

[Potapov et al., 2012, 2013]. 

Let us consider the main mechanisms of radiation 

belt electron acceleration by ULF waves proposed to 

date. 

 

2.1. Acceleration in drift resonance 

The simplest method of the electron acceleration by 

ULF waves can be summarized in the following way: a 

wave is excited by a source, an electron gets into a drift 

resonance with the wave due to interaction with its 

azimuthal electric field; the electron energy linearly 

increases with time according to (31). A number of 

articles have experimentally demonstrated this 

mechanism [Zong et al., 2009, 2012; Mann et al., 2013; 

Claudepierre et al., 2013; Foster et al., 2015; Hao et al., 

2014, 2019]. In this case, the wave source is usually 

associated with a solar wind pressure impulse. The 

impulse initially generates a fast magnetosonic wave, 

which propagates through the magnetosphere and 

generates an Alfvén wave on the resonant shell. 

Numerical modelling of the dynamics of electrons was 

carried out in [Degeling et al., 2007, 2008]. 

Another mechanism, which also requires fulfillment 

of the drift resonance condition for its implementation, 

has also been proposed in a number of works. In this 

case, the ULF wave background with random 

amplitudes and phases in the magnetosphere is assumed 

to be in the magnetosphere. Entering into a drift 

resonance with this background, a particle experiences a 

random walk across magnetic shells, either losing or 

gaining energy at short temporal intervals. In the end, 

there is particle diffusion from areas of increased 

concentration to areas of decreased concentration. As 

follows from Eq. (25), if the diffusion is earthward, the 

particle energy increases due to the conservation of the 

adiabatic invariants μ, J [Falthammar, 1965, 1968; 

Lejosne and Kollmann, 2020]. The diffusion equation 

has the form [Schulz and Lanzerotti, 1974]: 

2

2
.LLDf f

L
t L LL

   
     

 (32) 

Here f is the density of particles in the phase space, 

DLL is the diffusion coefficient. Following [Brizard and 

Chan, 2001; Fei et al., 2006], the diffusion coefficient is 

expressed as 

,E B

LL LL LLD D D   (33) 

where DfL and DfL are the contributions due to 

fluctuations in the electric and (modulus) magnetic 

fields, respectively. Analytical expressions for these 

values have been derived in [Brizard and Chan, 2001; 

Fei et al., 2006]: 

 6

d2 2

1
.

8

E E

LL m

mE E

D L P m
B R

   (34) 

 
2

4 2

d2 2 2 4
.

8

B B

LL m

mE E

D L m P m
q B R


 


  (35) 

Here BE is the magnetic field magnitude at the Earth 

equator,  
1/2

2 21 / c


    is the relativistic factor, E

mP  

and B

mP  are the spectral densities of ULF waves’ electric 

and magnetic fields. The argument dm  indicates that 

spectral densities should be taken for the frequency 

corresponding to the drift resonance. The functions E

mP  

and B

mP  should be determined from experimental data 

[Ozeke et al., 2012]. Empirical analytical expressions 

for the diffusion coefficients depending on the L-shell 

and the magnetosphere disturbance level (K p  index) are 

given in [Ozeke et al., 2014]. Note that there are some 

disagreements about the correct form of the diffusion 

coefficients in theory [Lejosne, 2019]. 

The diffusion theory can explain a number of basic 

features of radiation belt electron distribution [Loto'aniu 

et al., 2006; Shprits et al., 2008; Mann et al., 2012; Su et 

al., 2015; Ozeke et al., 2018; Sandhu et al., 2021]. At 

the same time, some researchers express doubts that 

fundamental premises of this theory (in particular, the 

stochastic nature of ULF waves, completely stochastic 

particle motion) correspond fully to reality [Ukhorskiy 

et al., 2006; Degeling et al., 2007, 2008; Ukhorskiy and 

Sitnov, 2008]. Probably, the diffusion theory as a whole 

correctly describes the averaged dynamics of radiation 

belts. However, in each specific case numerical 

simulation of the motion of electrons in the field of ULF 

waves generated by external and internal processes under 

these specific conditions is required. It may be necessary to 

take into account the combined effect of ULF waves and 

higher frequency plasma oscillations, including VLF 

waves (especially choirs) [O'Brien et al., 2003; Li et al., 

2005; Simms et al., 2021]. ULF waves can contribute to 

the initial acceleration of particles and their transport to the 

magnetosphere inner regions. They can be locally 

accelerated by VLF waves to relativistic energies there  
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[Pilipenko et al., 2017]. Theoretical and observational 

arguments in favor of particle acceleration by VLF waves 

are presented in [Demekhov et al., 2006; Baker et al., 

2019; Allison and Shprits, 2020]. 

In conclusion of this subsection, we note that the 

drift resonance condition 
dm   implies the wave-

particle interaction is caused by the Alfvén wave 

electric field azimuthal component Ea. This follows 

directly from energy balance equation (28). However, as 

noted by Hudson et al. [1999], the acceleration by the 

radial component Er is possible as well. It can occur if 

the geomagnetic field is not axisymmetric. For example, 

the magnetosphere is compressed from the dayside by 

the incoming solar wind flow. As is known, near-

equatorial particles move along constant magnetic field 

isolines. The particle's drift trajectory will then be 

stretched and shifted in the midnight-noon direction, as 

shown in Figure 9. Imagine, for example, that the Alfvén 

wave has m=2. Let an electron start in the magnetosphere 

morning sector. Then, drifting in the equatorial plane along 

the constant geomagnetic field isoline, the electron will 

move away from Earth, constantly experiencing the 

accelerating effect of the wave's radial electric field. After 

passing the midnight-noon line, the electron will begin to 

approach Earth, but the wave's electric field will also 

change the sign. This means that the electron will still be 

accelerated by the radial electric field. Drift resonance 

condition in such a compressed magnetic field (21) should 

be replaced by condition 

d( 1) 0.m     (36) 

The electron energy increment calculation for this 

case was given in [Elkington et al., 2003].  

 

2.2. Non-resonant acceleration mechanisms 

Several papers have suggested that mechanisms 

associated with ULF waves, but not requiring wave-

particle resonance, may be responsible for the acceleration 

and radial transfer of radiation belt particles. 

To understand the conditions which make it 

possible, let us find in general the energy acquired by a 

particle during a gyroperiod τс:, 

 

Figure 9. Electron motion in a compressed dipole field. 

Azimuthal wave number m=2 (according to [Hudson et al., 

1999; Elkington et al., 2003]) 

c c
d( )

a d 0 d
0 0

i m t
q E u dt qr E e dt

 
  

      (37) 

(we limited ourselves to the case of a near-equatorial 

particle). If the drift resonance condition is not met, at 

constant values of the wave amplitude E0 and the drift 

frequency ωd, this integral is zero. The only way to 

obtain Δε≠0 is to assume that the amplitude and/or the 

drift velocity depend on time. 

The particle acceleration by the damping ULF wave 

electric field is empirically demonstrated in [Zong et al., 

2011; Wang et al., 2015]. The damping might have been 

due to the interaction with the ionosphere or due to the 

wave energy transfer to particles. The energy increase is 

maximum when the drift resonance condition holds, but 

the acceleration occurs even out of the resonance. 

Indeed, if the initial position of a particle is such that 

during the first half-period it acquires energy from a 

wave, in general it accelerates: although the particle 

loses energy during the next half-period since the field 

value decreases due to the wave damping, this does not 

compensate the energy increase during the first half-

period. The particle energy change for this case was 

calculated in [Zhou et al., 2016]. 

An alternative case was examined by Liu et al. 

[1999]: in integral (37), the particle drift velocity-

changes. It is assumed to be associated with the 

presence of a background of high-frequency plasma 

waves in the magnetosphere. Interaction with such a 

background practically does not change the energy of 

particles, but changes their pitch angles [Tsurutani and 

Lakhina, 1997]. Since the drift velocity depends on the 

pitch angle, the interaction with a high-frequency 

background causes the drift velocity to change and 

integral (37) to become not equal to zero. Of course, in 

each specific case, a particle in this process can both 

gain and lose energy. However, in general, there is a 

transfer of energy from a wave to particles. It follows 

from the second principle of thermodynamics: the 

transfer of energy from a wave to particles corresponds 

to increased disorder in the wave-particle system. Liu et 

al. [1999] called this mechanism the magnetic pumping. 

Using Equation (37) assumes that the wave is 

coherent. In this case, the wave is described by a certain 

frequency and azimuthal wave number. Ukhorskiy et al. 

[2009] removed this restriction. It was supposed that the 

wave is divided into small azimuthal sectors with 

random phase variation from sector to sector. Thus, the 

wave is azimuthally small-scale, although it does not 

have a well-defined azimuthal wave number. Similarly, 

the wave is divided into sectors with random phases by 

L-shells. When an electron enters the wave localization 

region, it experiences random "shocks" from the wave 

electric field in different regions. As a result, it makes 

random walk through the magnetosphere with 

simultaneous energy change. As shown in that paper, on 

average, the energy of the particles grows. Thus, 

Ukhorskiy et al. [2009] justify the possibility of the 

acceleration of radiation belt particles by azimuthally 

small-scale waves out of the drift resonance. Numerical 

simulation of the electron dynamics in the field of 

poloidal Alfvén waves with m>>1 has been carried out 

in [Degeling et al., 2019; Rankin et al., 2020]. 
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3. STRUCTURE OF ULF WAVES 

IN MAGNETOHYDRODYNAMICS 

A detailed discussion of the spatial structure of ULF 

waves in the magnetosphere is beyond the main 

objectives of this review. However, a brief discussion of 

this question is crucial for providing an insight into both 

the wave generation by charged particles and the 

acceleration of particles by waves or charged particle 

flux modulation. The structure of waves is primarily 

studied in the framework of magnetohydrodynamics 

(MHD) [Alperovich and Fedorov, 2007; Leonovich and 

Mazur, 2016]. This approach usually involves axially 

symmetric models of the magnetosphere, which take 

into account the curvature of field lines, the 

inhomogeneity of the magnetic field and plasma across 

magnetic shells and along field lines. 

 

3.1. Equilibrium and coordinate system 

To study ULF waves in a dipole-like 

magnetosphere, an axially symmetric coordinate system 

{ x
1
, x

2
, x

3
} is used. It is oriented so that the radial 

coordinate x
1
 defines a magnetic shell, the azimuthal 

coordinate x
2
 defines a field line at the shell, and the 

longitudinal coordinate x
3
 defines a point on a field line 

(Figure 10). 

The distance from Earth’s center to the point of 

intersection of the geomagnetic equator and a field line 

L (the McIlwain parameter) is used as a radial 

coordinate; and the azimuthal angle f, as an azimuthal 

coordinate. The physical length of a vector in this 

coordinate system is .ii idl g dx  Here, gi is a metric 

tensor component. The determinant of the metric tensor 

is g=g1g2g3. 

If the plasma pressure is isotropic, the plasma 

equilibrium conditions are defined by relations 

0 0 0

1
,P j B

c
     (38)  

1
0.

2
B

R


     (39) 

Here, P0, j0, and B0 are the equilibrium values of plasma 

pressure, current, and magnetic field; 

 

Figure 10. The curvilinear coordinate system oriented by 

the magnetic field 

2

0 04 /P B    is the plasma pressure to magnetic 

pressure ratio; R is the local radius of field line 

curvature; parameters 

0 0

1

1 0 1 0

1 1
,

dP dP

dLdxg P g P
   (40) 

0 0

1

1 0 1 0

1 1
B

dB dB

dLdxg B g B
   (41) 

characterize the inverse scale of the plasma pressure and 
magnetic field inhomogeneity. 

Relation (38) implies the invariability of the 
equilibrium plasma pressure P0 along a field line. The 

0 1 2B g g  parameter defines the magnetic flux per unit 

area (δx
1
=1, δx

2
=1) that is perpendicular to a field line. 

The relation 0 0B   means that this parameter is 

invariable along a field line. If the McIlwain parameter 
L and the azimuthal angle φ are the coordinates x

1
, x

2
, it 

is easy to show that 0 1 2 eq ,B g g B L  where Beq is the 

magnitude of the magnetic field at the equator of a 
given magnetic shell. 

 

3.2. The main equations 

Within the framework of one-fluid 
magnetohydrodynamics, hot plasma is known to 
conduct three modes of oscillations: the Alfvén mode, 
slow and fast magnetic sound. The Alfvén wave 
dispersion relation is 

2 2 2
A.k   (42) 

Here, ω is the wave frequency, k  is the component 

of the wave vector along the magnetic field, 

A 0 0/ 4B   is the Alfvén velocity, where B0 and 

ρ0 are the equilibrium values of the magnetic field and 
the plasma density. The absence of the transverse 
dispersion (i.e., the frequency dependence on the 
transverse component of the wave vector) indicates that 
the Alfvén mode transfers energy only along the 
magnetic field. Two types of magnetoacoustic waves 
are described by dispersion relation 

 

 

2 2 2 2

S A

2
4 2 2 2 2 2 2

S A S A

1

2

4 ,

k

k k k

   


   



 (43) 

where S 0 0/P    is the speed of sound, γ is the 

adiabatic exponent. The upper and lower signs refer to 
fast and slow magnetoacoustic waves (FMS and SMS) 

respectively. If k k the dispersion relations for 

these modes transform into 

 2 2 2 2

A S ,k    (44) 

2 2 2

Ck   (45) 

respectively. Here  
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A S
C

2 2

S A




 (46) 

is the speed of SMS. As one can see, SMS, like the 

Alfvén mode, propagates predominantly along field lines. 

In inhomogeneous plasma, all three MHD modes are 

coupled; therefore, they are described by a system of 

interdependent wave equations. 

In case of the azimuthally small-scale limit of the 

Pc4–5 range, the FMS propagation region is narrowly 

localized near the magnetopause. Thus, the role of FMS 

may be neglected when studying waves inside the 

magnetosphere [Leonovich and Mazur, 2016]. Besides, 

the characteristic frequencies of SMS are significantly 

lower than those of Alfvén waves [Cheremnykh and 

Parnowski, 2004]. Hence, coupling with SMS has a 

relatively small effect on propagation of Alfvén waves. 

The transverse component of the electric field of Alfvén 

waves is not vortex, that is, it can be represented in the 

form of a transverse gradient of a scalar function: 

,E     (47) 

[Tamao, 1984b; Klimushkin, 1994], where the sign ⊥  

marks the direction perpendicular to a field line. Based 

on the MHD equations, the following relation for 

propagation of Alfvén waves can be derived: 

2

1 T 1 P
ˆ ˆ( ) ( )L m L q         (48) 

[Klimushkin et al., 2004] Here,  

2

2
T 3 3 2

1 A

ˆ ( ) ,
gg

L
gg


      (49) 

2

1
P 3 3 2

2

ˆ ( )
gg

L
g Ag

 
      

 
 (50) 

are the toroidal and poloidal mode operators 

respectively, η is a correction related to the plasma 

pressure  

2

S

2

A

2 2
,

J

R B R

 
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 
 (51) 

q is a wave source. An example of a source can be 

external currents in the magnetosphere jext [Zolotukhina, 

1974; Pilipenko et al., 2001]. 

In this case, the right-hand side of (48) is  

ext2

4
,

i
q j

c


 
    (52) 

[Mager and Klimushkin, 2007, 2008]. Fluctuating field-

aligned currents in the ionosphere and magnetosphere 

can also act as wave sources [Leonovich and Mazur, 

1996; Pilipenko et al., 2016]. 

Equation (48) should be complemented with the 

boundary condition for the ionosphere. Due to the high 

conductivity of ionospheric plasma, in the first 

approximation the Alfvén wave is reflected from the 

ionosphere. Therefore, the boundary condition has the 

form 

3( ) 0,x   (53) 

where 3x  is the point of intersection of the ionosphere 

and a field line. A wave that satisfies this boundary 

condition should be standing along a field line. A more 

general form of the boundary conditions (in the 

presence of finite conductivity and the external currents 

in the ionosphere) is given in [Leonovich and Mazur, 

1996]. 

If the radial scale of the disturbance is much smaller 

than the azimuthal scale, the structure of the Alfvén 

wave is determined by the first term of (48). As follows 

from (47), in this case the radial component dominates 

in the electric field of the wave. An Alfvén wave with 

such polarization is called toroidal. The wave structure 

is approximately expressed as  

1 3( ) ( ),NR x T x   (54) 

where the first and second factors describe the structure 

across magnetic shells and the longitudinal structure 

respectively. The N index means the number of a 

harmonic along a field line. The parallel structure of the 

toroidal mode can be found from equation 

T ( ) 0NL T   (55) 

under boundary conditions  3 0.NT x   The solution to 

(55) is possible at certain frequencies — the eigenvalues 

of the equation 1

T ( )N x  (toroidal frequency). They 

depend on the radial coordinate x
1
. For a fixed wave 

frequency ω (for a certain N) the solution is possible 

only at the magnetic shell 1

T ,Nx  where the wave 

frequency is equal to the toroidal frequency 1

T ( )N x  

1

T ( ).N x    (56)  

The magnetic shell 1

TNx  is called a toroidal surface. 

Near this surface, the wave field has a singularity 

 1 1

Tln .Nx x   (57) 

The presence of this singularity was first established 
within the framework of one-dimensional 
inhomogeneous magnetosphere models that take into 
account only plasma inhomogeneity across magnetic 
shells [Southwood, 1974; Chen and Hasegawa, 1974]. 
Further work showed that this singularity also existed in 
two-dimensionally inhomogeneous models with the 
curvature of field lines and the longitudinal 
inhomogeneity of plasma and magnetic field taken into 
account [Lifshits and Fedorov, 1986; Chen and Cowley, 
1989]. In a three-dimensionally inhomogeneous 
magnetosphere model (when the azimuthal 
inhomogeneity is also taken into account), the form of 
the singularity can be more complex [Mager and 
Klimushkin, 2021]. 

When the azimuthal scale of the disturbance is much 
smaller than the radial one, the structure of the wave field 
is determined by the second term of (48). In this case, the 
azimuthal component dominates in the electric field of the 
wave. The Alfvén wave of this type is called poloidal. The 
wave structure is approximately expressed in relation  

1 3( ) ( ),NR x P x   (58) 

where the PN function is a solution to 
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P
ˆ ( ) 0NL P   (59) 

under the boundary conditions  3 0.NP x   

Eigenvalues of (59) can be denoted as 1

P ( )N x  that is 

the poloidal frequency. Its dependence on the radial 

coordinate x
1
 is defined by the parameters that are the 

functions of this coordinate (Alfvén speed, components 

of the metric tensor) included in the poloidal operator 

PL̂ . The coordinate of so-called poloidal surface x
1
 can 

be derived from equation 

1

P ( ).N x    (60) 

In the major part of the magnetosphere, the functions 
1

T ( ),N x  1

P ( )N x  are decreasing. If 

1 1

T P( ) ( ),N Nx x    the poloidal surface is closer to 

Earth than the toroidal one: 1 1

T PN Nx x  (Figure 11), and 

vice versa. Numerical solution of equations (55, 59) 

shows that in cold plasma (with β=0) the toroidal 

frequency is always greater than the poloidal one 

[Cummings et al., 1969; Leonovich and Mazur, 1993]. 

When the finite pressure is taken into account, both 

situations are possible 1 1

T P( ) ( )N Nx x   , as well as 

1 1

T P( ) ( )N Nx x   , depending on the pressure value 

and its gradient.  

With not very high pressure (β1), the frequency 

difference is rather small, the longitudinal structure of 

the toroidal and poloidal modes is also similar [Klimushkin 

et al., 2004]. In this case, the radial structure of the wave is 

approximately described by relation 

2 2 1

1 T 1

2 2 2 1

a P
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N N

N N N

x R

k x R q
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 (61)  

Here, 
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 (62) 

We can see that the parameter ka has the dimension of a 

wave vector. The 
1

a2 k   parameter is approximately 

equal to the azimuthal wavelength averaged along the 

field line. 

Using the Wentzel–Kramers–Brillouin (WKB) 

approximation in the radial coordinate, it is easy to 

obtain the radial component of the wave vector from (61): 

2 2 1
2 2 P
1 a 2 2 1

T

( )
.

( )

N

N

x
k k

x

 
 

 
 (63)  

The radial component of the wave vector is seen to tend 

to infinity near the toroidal surface, and it tends to zero 

near the poloidal one. 

As mentioned above, in a homogeneous plasma the 

magnetic field of the Alfvén wave oscillates in the 

direction perpendicular to the equilibrium magnetic 

field B0. However, in an inhomogeneous plasma with the 

 

Figure 11. Mutual position of toroidal and poloidal 

surfaces. A case with 
1 1

T P
( ) ( )

N N
x x    is shown 

 

finite pressure taken into account, the Alfvén wave has a 

parallel component of the magnetic field B3 

3
3

2

Rgcm
B

g


 


 (64) 

[Klimushkin et al., 2004]. 

 

3.3. Structure of Alfvén waves in the region 

of monotonic variation of toroidal and poloidal 

frequencies 

The solution of (61) depends on the form of 

functions 1

T ( ),N x  1

P ( ).N x They decrease in the 

major part of the magnetosphere (Figure 11). Leonovich 

and Mazur [1993] showed that the wave localization 

region is limited by the region between the poloidal and 

toroidal surfaces (Figure 12). The wave energy 

propagates across magnetic shells. A wave is generated 

in the vicinity of the poloidal surface (for example, by 

external currents in the magnetosphere or in the 

ionosphere) and moves toward the toroidal surface. 

Referring to (63), as a wave approaches the toroidal 

surface the radial wavelength decreases. In contrast to 

the homogeneous plasma case, the wave energy 

propagates across field lines in both the radial and 

azimuthal directions. Near the poloidal surface, the 

mode is completely damped due to the finite 

conductivity of the ionosphere. An oscillation of this 

type is presumably described in [Leonovich et al., 2015]. 

When the azimuthal inhomogeneity is taken into 

account, the range of space enclosed by the poloidal and 

toroidal surfaces retains the meaning of the region 

where wave propagation is possible. However, the 

toroidal surface loses the role of the resonant surface 

and the wave energy accumulator. Instead, a separatrix 

surface located between the poloidal and toroidal 

surfaces appears which takes this role. Wave energy 

generated by intramagnetospheric processes near the 

poloidal and toroidal surfaces propagates toward the 

separatrix surface and dissipates at both its sides 

[Klimushkin et al., 1995; Mager and Klimushkin, 2021].  

So far, we have only considered monochromatic 

waves, i.e. waves with fixed frequency ω. The opposite 

case is an impulse-generated wave. If the frequency 

profiles 
1

T ( )N x  and 
1

P ( )N x  are monotonic, a 

phenomenon called phase mixing occurs [Radoski, 1974]. 

Let the wave have poloidal polarization at the initial 
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Figure 12. Structure of an azimuthally small-scale Alfvén 

wave across magnetic shells (left). Path of azimuthally small-

scale Alfvén wave propagation from poloidal to toroidal 

surfaces (right) 

moment. Since each magnetic shell oscillates with its own 

frequency, phases of these oscillations diverge rapidly 

relative to each other, and the radial wavelength is rapidly 

decreasing (Figure 13). As a result, a wave becomes 

toroidally polarized [Mann and Wright, 1995]. The time 

interval τtr of the wave transformation is estimated by 

relation 

1

T
tr .Ndm

L dL


 

  
 

 (65) 

Consideration of the dipole configuration influences this 

process insignificantly: the transformation of the 

polarization from poloidal to toroidal is accompanied by 

an appropriate change in the instantaneous frequency 

from poloidal PN  to toroidal TN  throughout 

magnetic shells [Leonovich and Mazur, 1998]. 

Observational features of the Alfvén wave 

transformation due to phase mixing are presented in 

[Sarris et al., 2009; Zolotukhina et al., 2008; Wei et al., 

2019]. However, such transformations are observed 

only in exceptional cases: polarization usually remains 

poloidal. Choi and Lee [2021] suppose that this is due to 

the fact that poloidal waves occur mainly in regions 

with a small transverse gradient of the Alfvén speed. On 

the other hand, it might be explained by the 

nonmonotonic frequency profile P ( )N L  in the regions 

with the best conditions for generation of such waves. 

The theory of these waves is discussed in the next 

subsection.  

 

3.4. Transverse resonator for Alfvén waves 

Until now, we have examined the case with 

monotonic profiles of 1

T ( ),N x  1

P ( )N x . In this case, 

the wave propagation region is limited by the toroidal 

and poloidal surfaces in the radial coordinate. However, 

the Alfvén wave can also be localized in the vicinity of 

extrema of these functions. Expanding the square of the 

poloidal frequency in a Taylor series near the extremum 

of 
1 2

P ( )N x  at a point 
1

0x  yields the value of the 

radial component of the wave vector  
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         
 

 (66) 

where the 0 index marks the value of a function near the 

extremum, and the prime denotes differentiation over x
1
. 

With the square of the resonator width 

 

Figure 13. Phase mixing: time variation in the radial 

structure of a pulse-generated Alfvén wave. A wave structure 

at three consecutive time points is shown (t3>t2>t1) 
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and 1 1

0x x x    relation (66) can be rewritten as: 
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 (68) 

The wave localization region (where 2

1 0k  ) is 

seen to be bounded by two poloidal surfaces, i.e. the 

mode is trapped in a resonator across magnetic shells. 

The width of the resonator determines the discrete 

spectrum of the Alfvén wave. It can be found using the 

Bohr–Sommerfeld quantization rule 

 1

1

1
, 2 .

2
k x n

 
    

 
  (69) 

Here, n is the radial harmonic number in the 

resonator. Figure 14 depicts eigenharmonics of the 

resonator. The resonator can be located near the 

maximum of the 
1 2

P ( )N x  function if 
0 0P TN ,N    

and near the minimum if 
0 0P TN N    [Vetoulis and 

Chen, 1994; Leonovich and Mazur, 1995; 

Klimushkin, 1998; Klimushkin et al., 2004]. The 

former can take place at the outer edge of the 

plasmapause with the finite plasma pressure and 

moderate pressure gradient; the latter can exist at the 

inner edge of the plasmapause with negligible 

pressure, or slightly outside the ring current if the 

pressure is finite and its gradient is significant. The 

wave energy in the transverse resonator propagates in 

the azimuthal direction. Giant pulsations (Pgs, 

poloidal Pc4 waves with moderately high azimuthal 

wave numbers m~20) are likely to be eigenharmonics 

of the resonator at the outer edge of the plasmapause 

[Mager, Klimushkin, 2013]. 

If a source of an Alfv´en wave within a transverse 

resonator is a pulse, all transverse harmonics of the 

resonator are excited simultaneously, each at its own 

frequency n . The summation of harmonics with 

different frequencies and different spatial structures 

results in harmonic beating. They are accompanied 

by chaotic changes in the radial structure of the wave 

[Mager and Klimushkin, 2013]. Such a situation is 

probably observed in [Yeoman et al., 2012; Mager et 

al., 2018]. 
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Figure 14. Structure of three main radial harmonics in a 

transverse Alfvén resonator 

 

3.5. Alfvén wave generation by a moving 

source 

We have mentioned above that Alfvén waves can be 

generated by external currents in plasma. For the 

magnetosphere, this was first supposed in [Zolotukhina, 

1974; Guglielmi and Zolotukhina, 1980]. Mager and 

Klimushkin [2007] considered a scenario with a current 

produced by a cloud of charged particles injected during 

a substorm and drifting in the azimuthal direction at an 

angular velocity ωd (Figure 15). The wave field 

generated by such a source was calculated in [Mager 

and Klimushkin, 2008]. 

It was shown there that at a given point in the 

magnetosphere, a wave appears at the moment of the 

particle arrival. At a given magnetic shell, the frequency 

Ω(L) of a wave slowly changes from the poloidal to the 

toroidal eigenfrequency of that L-shell. The azimuthal 

wave number in this case is 

d

.m





 (70) 

This relationship implies that the wave phase is constant in 

the particle frame of reference. Relation (70) coincides 

with the drift resonance condition, yet it has a 

completely different physical meaning: the drift 

resonance condition means that a particle interacts most 

effectively with the electromagnetic field of a wave with 

a certain m given that the particle energy satisfies drift 

resonance condition (21); Equation (70) means that a 

cloud of particles with a given energy (and, therefore, a 

given drift frequency) generates a wave whose m 

satisfies this relation. 

Zolotukhina et al. [2008] studied in detail the 

temporal behavior of the magnetic field of a Pc5 wave 

that occurred at the geostationary orbit simultaneously 

with a cloud of substorm-injected particles. They 

showed that its behavior is consistent with the theory 

developed by Mager and Klimushkin [2008]. In the 

statistical study by James et al. [2013], 83 wave events 

associated with substorms have been examined. It was 

found that in each case a wave appeared simultaneously 

with arrival of particles at a measurement point, and 

relation (70) held for all events. Waves observed to the 

west (east) of the onset propagated to the west (east), i.e. 

they moved away from the onset point. This is consistent 

with wave generation by substorm-injected protons and 

electrons respectively. Geomagnetic and riometric 

ground-based observations of azimuthally propagating Pi3 

 

Figure 15. Scheme of wave generation by a moving cloud 

of injected particles [James et al., 2013]. Substorm onset point 

is marked by S.O. 

pulsations were shown in [Moiseev et al., 2020]. Their 
velocities corresponded to the propagation velocities of 
electrons injected during a substorm. Thus, we can 
conclude that for many events, the theory of a moving 
source generally corresponds to ULF wave 
observations. 

Additional empirical arguments in favor of Pc5 and 

Pi2 wave generation by substorm-injected particles were 

provided in [Saka et al., 1992, 1996]. 

 

4. ULF WAVES IN KINETICS.  

ULF WAVE INCREASE  

DUE TO RESONANT INTERACTION  

WITH ENERGETIC PARTICLES 

Since magnetospheric plasma is collisionless, the 
applicability of MHD for its description is questionable. 
The kinetic approach describing magnetospheric plasma 
is more adequate, especially at finite plasma pressure. 
From the point of view of the review, it is of particular 
importance that the kinetic approach automatically takes 
into account the resonant wave–particle interaction. 
Among the important results in kinetics are the 
existence of oscillation modes that have no MHD 
analogs [Mikhailovskii and Fridman, 1967; Tajiri, 1967; 
Xia et al., 2017] and the possibility of wave excitation 
by instabilities caused by the wave–particle resonance 
[Korablev and Rudakov, 1968; Hasegawa, 1969; 
Southwood et al., 1969; Mikhailovskii and Pokhotelov, 
1975, 1976]. 

To study oscillations with frequencies below the ion 

gyrofrequency, gyrokinetics is usually used. It is a 

version of kinetics where Vlasov equations are averaged 

over the gyrophase [Antonsen and Lane, 1980; Catto et 

al., 1981]. In gyrokinetics, the wave field is described 

by three variables, one of which (Ф) describes both the 

transverse magnetic wave field and the transverse 

electric wave field; the second, the parallel magnetic 

field B ; and the third, the parallel electric field E  

[Chen and Hasegawa, 1991]. The variable Ф is related 

to the magnetic vector potential A  by the relation 

 / /A ic l     . In gyrokinetics, the Coulomb 

calibration is chosen: 0.A   
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The solution of gyrokinetic equations is defined by 

the equilibrium distribution function F(ε, μ). It is 

usually assumed that the ion plasma component consists 

of two fractions, cold and hot particles. The cold 

particles (energy ε~100 eV) determine the plasma 

density and its inertia. The hot particles (energy ε~10–

100 keV) determine the plasma pressure and are 

responsible for its stability. It is only the hot particles 

which take part in the resonant interaction with ULF 

waves. If the plasma pressure is isotropic, the 

distribution function is independent of the magnetic 

moment. 

It is often assumed that there is an admixture of the 

cold electrons in plasma (for example, of ionospheric 

origin). Due to the very small electron mass, the cold 

electrons are rapidly distributed along a magnetic field 

line until all points along the field line acquire an equal 

electrostatic potential. In this case, the wave parallel 

electric field is negligible, 0.E   We will use this 

approximation further on. Note that the assumption of 

the vanishingly small value of the parallel electric field 

makes slow magnetosonic waves impossible to exist 

since in kinetics this mode occurs only when the finite 

E  component is taken into account [Klimushkin and 

Kostarev, 2012]. 

 

4.1. Instability factors 

Before we proceed to the description of modes of 

plasma oscillations in kinetics, it is worth focusing on 

the general plasma instability condition leading to the 

generation of ULF waves. In this issue, we follow the 

works [Huba and Drake, 1981, 1982]. 

It would be sufficient to consider a simplified model 

in which field lines are straight, but there is a magnetic 

field gradient 0B directed along the X-axis (Figure 16) 

[Huba and Drake, 1981]. In this case, the drift velocity 

of particles is determined by expression 

2

0
d

c

ln

2

B
u

x

 


 
 (71)  

and directed along the positive direction of the Y-axis. 

Let us turn to the reference system associated with the 

wave. Consider two particles located in positions 1 and 2, 

differing in the direction of the wave electric field: 

Еу>0 and Еу<0 respectively. Let energies of these 

particles correspond to the drift resonance: the particles 

drift with a speed equal to the wave phase velocity 

along the Y-axis: 

d .
y

u
k


  (72) 

In the wave’s reference system, each resonant particle is 

affected by a stationary electric field, which either slows 

it down or accelerates it. 

Particle 1 experiences electric drift with velocity 

0/Eu cE B  in the positive direction of the X-axis. At the 

same time, the magnetic field grows at the particlelocation. 

From the constant magnetic moment  2

0/ 2B   it 

 

Figure 16. Wave electric field (in the wave frame) 

 

follows that the particle energy (enclosed in rotation 

around field lines with speed of 


) increases. 

Consequently, this particle accelerates, gaining energy 

from the wave. During the time δt, the particle energy 

increases by 

d .
y

qu E t q E t
k


      (73) 

Here, it is taken into account that ratio (72) is satisfied 

in the resonance. In order to be in the position x 0  at 

some time, the particle must start from a point with the 

coordinate x0−δx, where 

0

.E

E
x u t c t

B
      (74) 

Particle 2 experiences electric drift with the same 

velocity 0/Eu cE B  in the negative direction of the X-

axis. Since the magnetic field at the particle location 

decreases, the particle energy must decrease to save the 

magnetic moment. Consequently, this particle slows 

down, transferring its energy to the wave. The decrease 

in energy over the time period δt is also calculated by 

Equation (73), but the value of δt should be taken with 

the opposite sign. In order to appear in the position x 0  at 

some time instant, the particle must start from a point 

with the coordinate x0+δx, where δx is defined by 

Equation (74). 

Thus, the particles in position 1 take energy from the 

wave, while the particles in position 2 transfer energy to 

the wave. The growth of the wave is possible only if 

there are more latter particles than the former. Let F(ε, x) 

be an undisturbed particle distribution function. Then 

the instability condition is written as 

res 0 res 0( , ) ( , ) 0.F x x F x x         (75) 

Here, εres is the resonant frequency. Expanding this 

inequality into a Taylor series at the point yields an 

instability condition in the form 

res

0.
F F

x
x 

  
      

 (76) 

Substituting δε and δx from (73), (74), after some 

manipulations we obtain the instability condition in the 

form 

resε

0.
ykF c F

qB x

  
  

   
 (77) 
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In a curved magnetic field, 

res
eq

0.
F m c F

qB L L


  
  

    

 (78) 

The expression in square brackets can be written as 

dF F L F

d L

  
 

   
 (79) 

where  

eq

.
L m c

qB L



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 (80) 

The instability leading to the wave increase is seen 

to be possible in one of two cases. First, the distribution 

function increases with energy at a certain energy 

interval, and the resonant energy falls into this interval. 

Such distribution function can be called the inverted 

distribution function (the term bump on tail is often 

used). Secondly, there may be a strong distribution 

function spatial gradient for particles with resonant energy. 

The sign of the gradient must coincide with the azimuthal 

wave number sign. The corresponding instability can be 

coined as the gradient instability. The small azimuthal 

scale (m>>1) is beneficial for this instability. 

The case of curved field lines, when a particle 

experiences curvature drift, is treated similarly. The 

instability criterion is the same, (77) (refer to the 

original article [Huba and Drake, 1982]). 

 

4.2. Alfvén mode 

If the plasma pressure is small, in gyrokinetics, 

instead of Equation (48), the Alfvén mode is described 

by equation 

2 2 2

1 T P P
ˆ ˆ ˆ( ) ( ) ( ) 0.k L m L m L         (81) 

Here 
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 (84) 

l1 is the particle reflection point in the bounce motion, 
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dl
I m
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 (85) 

Due to the presence of the resonant denominator 

d bm K    , the third term of Equation (81) is 

complex. Hereinafter, the distribution function integral 

over the velocity space is assumed to be equal to the 

concentration of particles. 

The real part of Equation (81) leads to an 

insignificant poloidal frequency correction and is not 

taken into account. The imaginary part occurs when 

bypassing the singularity according to the Landau rule: 

 d b

d b

1
.i m K

m K
     

   
 (86) 

Since the third term in (81) includes the factor m
2
, the 

existence of the imaginary part of this term will lead to 

the appearance of the imaginary part of the poloidal 

frequency 
PIm .N  If PIm 0,N   there is a 

collisionless damping of the wave due to the energy 

transfer from the wave to energetic particles. Otherwise, 

in the case 
PIm 0,N   the instability takes place. The 

instability growth rate caused by the resonant wave-

particle interaction is  

,K

K





   (87) 
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 (88) 
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

     (89)  

where PN is the poloidal operator eigenfunction 

normalized as 

2

1

2

2 A

1
l

N

l

Pg
dl

g





  (90) 

[Karpman et al., 1977]. In agreement with the results of 

the previous section and as evident from Equation (88), 

the instability can be inverted (∂F/∂ε>0) or gradient 

(m·∂F/∂x
1
>0). The Alfvén wave inverted instability was 

first proposed by Korablev and Rudakov [1968]; the 

gradient instability, by Southwood et al. [1969]. If the 

bounce frequency is very high, only the term K=0 

should be left in (87), which corresponds to the drift 

resonance. A more general case, when it is necessary to 

sum all the bounce harmonics, was studied in detail by 

Pilipenko et al. [1977]. The numerical simulation of 

Alfvén wave excitation in the drift-bounce resonance 

due to the gradient instability with the magnetospheric 

plasma azimuthal inhomogeneity taken into account was 

carried out by Yamakawa et al. [2020]. 

Note that the wave frequency ω in the resonant 

denominator ( d bm K    ) is not an arbitrary value. 

Since the increment is a correction to the poloidal 

eginefrequency ΩPN(L), the wave frequency should be 

identified with ΩPN(L). Thus, the frequency is defined 

by the L-shell, where the wave is localized. Since d  

and b are the energy functions, the resonance 

condition determines the localization of the wave 

generated by the instability across magnetic shells at 

given values of the resonance energy εres (for example, 

the energy corresponding to the inverted part of the 
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distribution function), azimuthal wave number m, and 

bounce harmonic К [Mager and Klimushkin, 2005]. 

The appearance of imaginary addition only to the 

poloidal frequency is due to Alfvén wave-particle 

interaction that occurs due to the poloidal mode electric 

field azimuthal component, in accordance with energy 

equation (17). Hence, it is often concluded that poloidal 

waves excite instabilities in the magnetosphere. 

However, this conclusion needs correction. 

Let us turn to the case when the Alfvén wave 

propagates in the region of monotonic variation of 

toroidal and poloidal frequencies. Two limiting 

situations can be considered: a wave is generated by a 

monochromatic source or by an impulse one. In the 

former case, the wave propagates across magnetic 

shells, changing its polarization from poloidal to 

toroidal (see Subsection 3.3). At the same time, its 

amplitude increases due to interaction with energetic 

particles. As it propagates through the magnetosphere, 

the growth rate of the wave amplitude decreases and 

becomes zero when the wave reaches the toroidal 

surface (becomes toroidal). However, the cumulative 

effect of the amplitude increase due to instability takes 

place at the end of this process, when the wave has 

become toroidal (Figure 17) [Klimushkin, 2000]. If the 

wave is simultaneously damped due to the finite 

conductivity of the ionosphere, the maximum amplitude 

moves away from the toroidal surface toward the poloidal 

one. Nevertheless, the stronger the instability, the closer the 

wave amplitude maximum to the toroidal surface. 

The same situation arises in the impulse-generated 

wave case. However, transformation occurs not due 

to propagation across magnetic shells, but due to phase 

mixing. The stronger the instability, the larger the 

amplitude part falls on the toroidal polarization (Figure 18) 

[Klimushkin and Mager, 2004]. 

Thus, in both the monochromatic and impulse-

generated wave cases, the instability ultimately 

generates a toroidal wave. The only way to circumvent 

this difficulty is to assume that in most cases poloidal 

waves are enclosed in a resonator across magnetic shells 

(see Subsection 3.4). It is the only case when the 

instability can generate a wave with predominantly 

poloidal polarization. 

 

4.3. Drift-compressional mode 

Compressional modes in the magnetosphere are 

observed as Pc5 pulsations with the longest periods (so 

called storm time compressional Pc5 waves). The 

association of these waves with storm activity periods 

indicates the importance of hot plasma in their 

generation. An interesting property of such waves is 

diamagnetism: the plasma and magnetic pressures 

oscillate in antiphase [Moiseev et al., 2016]. Among 

MHD waves, this property is attributed to SMS waves. 

However, as mentioned above, in kinetics the existence 

of SMS waves requires a pronounced parallel electric 

field of the wave. Since the presence of even a small 

admixture of cold electrons leads to zeroing of the 

parallel electric field, the possibility of the existence of  

 

Figure 17. Wave amplitude distribution across field lines 

and the wave field structure in the case of a wave propagating 

across field lines and amplified due to instability [Klimushkin, 

2000]. The points x1 =0 and x1 =1 correspond to the poloidal 

and toroidal surfaces respectively. The amplitude maximum 

position is marked with 
1

0x  

 

Figure 18. Time dependence of the wave amplitude 

logarithm |Е| for different ratios of the instability increment to 

the damping decrement (indicated near curves). On the 

vertical axis are conventional units (logarithmic scale). The 

plot is for m=50, the decrement is 10 times less than the 

toroidal frequency. The vertical line separates the regions of 

predominantly poloidal (to the left of it) and toroidal wave 

polarization 

 

SMS waves in the magnetosphere within the framework 

of kinetics is questionable. 

Nevertheless, the compressional ULF modes with 

diamagnetic properties can exist. Integrating the Vlasov 

equation readily yields force balance equation 

[Pokhotelov et al., 2000]: 

2 2
0 0

2 2 2

A

1 .
4 4

B B k B B
P

k k

 
   

   

 (91) 

The azimuthally small-scale waves are characterized 

by the condition .k k  Equality (91) is therefore 

reduced to diamagnetism condition  

0
0.

4

B B
P 


 (92) 
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Thus, diamagnetism is not associated with specific 
wave types, but is a rather general property of azimuthal 
small-scale oscillations in finite-pressure plasma. 

In some works, the compressional Pc5 waves are 
associated with one of the kinetic modes in 
inhomogeneous plasma, so-called drift-compressional 
modes [Ng and Patel, 1983; Migliuolo, 1983; Ng et al., 
1984; Crabtree and Chen, 2004]. This mode is most 
easily illustrated in the cylindrical model of the 
magnetosphere. The magnetic field and plasma are 
considered to be one-dimensionally inhomogeneous. 
Field lines are concentric circles, and magnetic surfaces 
are nested coaxial cylinders. All equilibrium parameters 
depend only on the distance from the cylinder axis. 
Despite its simplicity, this model allows studying 
compressional waves in the magnetosphere since it 
takes into account such basic magnetosphere features as 
the field line curvature and the inhomogeneous plasma 
pressure profile. In this model, the dispersion equation 
for compressional modes has the form 

2
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[Klimushkin and Mager, 2011], where c/k    is 

the Bessel function argument J1, 

0

ˆ .
yk cF F

QF
qB


 
 

 (94) 

Here, the prime means the derivative to the radial 
coordinate (the cylinder radius). Let us now consider the 

quasi-hydrodynamic limit when d / 1,   ξ1, 

d, .k V   Then the dispersion equation is 

М1 0i
    


 (95) 

[Klimushkin and Mager, 2011]. Here, 
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The dispersion relation produces a wave frequency real 
part and an instability growth rate  

,
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Thus, the wave frequency is of the order of the 
diamagnetic drift frequency (when β~1). As follows 
from (101), a necessary instability condition is an 

increase in the average particle energy with distance 
from Earth. A large value of β is beneficial for the 
instability.  

The situation is more complicated in plasma with a 
field aligned inhomogeneity when the bounce motion of 
particles is taken into account. Since the observed 
compressional wave frequencies are much lower than 
the bounce frequencies of energetic particles of the ring 
current and radiation belts, the greatest contribution in 
the sum over bounce harmonics is made by the term 
with K=0 corresponding to the drift resonance. In this 
case, the wave parallel structure is described by the 
integral (rather than differential, as in the Alfvén wave 
case) equation [Ng et al., 1984; Crabtree et al., 2003; 
Crabtree and Chen, 2004]. The drift-compressional 
mode was found to be narrowly localized near the 
geomagnetic equator, in the region of maximum β 
(Figure 19). This is consistent with the observational 
data on Pc5 compressional waves [Takahashi et al., 
1987]. The mode eigenfrequency is [Mager et al., 2013] 
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Here, Lb is the particle trajectory length along the 

field line between the reflection points, βeq is the plasma 

pressure to magnetic pressure ratio at the equator, Vd is 

the drift velocity in the inhomogeneous magnetic field, 

nV   and TV   are the diamagnetic drift velocities due to 

concentration and temperature gradients respectively. 

The values ΛN characterize the wave eigenfrequencies. 

For three main harmonics, they are equal to Λ1=0.5/Req, 

Λ2=1.5/Req, Λ3=2.5/Req, where Req is the field line 

curvature equatorial radius. The drift-compressional 

mode frequency is seen to linearly depend on the 

azimuthal wave number m. More detailed study of the 

structure and excitation conditions of the drift-

compressional modes was carried out by Mager et al. 

[2013]. It was found that wave excitation due to drift 

resonance with energetic protons occurs when one of 

two conditions is met: either the plasma temperature 

increases with distance from Earth or an inverted 

distribution takes place in a certain region of energies: a 

bump on tail distribution function. The wave propagates 

westward, in the proton drift direction (negative wave 

numbers, m<0). However, in the presence of hot 

electrons in plasma, the drift-compressional waves 

propagating in the electron drift direction (to the east, 

m>0) may exist [Kostarev and Mager, 2017].  

 

4.4. Coupling of Alfvén and drift-

compressional modes 

Alfvén and drift-compressional modes are coupled 

due to the plasma and magnetic field inhomogeneity in 

a finite pressure plasma. The mode coupling effect on 

the wave generation conditions in a one-dimensional 

inhomogeneous magnetosphere model with straight 

field lines was studied by Ng and Patel [1983]; in the 
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Figure 19. Parallel structure bN of the first three harmonics 

of the drift-compressional mode [Mager et al., 2013]. The 

dotted line shows the behavior of β  along a field line 

 

cylindrical model, by Klimushkin et al. [2012]; and in 

the dipole-like (two-dimensionally inhomogeneous 

model), by Mager and Klimushkin [2017]. It has been 

found that for certain parameters the coupling gives rise 

to a new plasma instability, a kinetic analogy of 

ballooning instability in MHD. 

As shown by Mager and Klimushkin [2017], the 

instability is possible when the wave frequency is much 

higher than the average drift frequency of hot protons. 

In this case, the wave behaves as follows (Figure 20). At 

small azimuthal wave numbers m, the poloidal Alfvén 

and drift compressional modes represent two separate 

oscillation branches. In this case, the Alfvén wave 

frequency ΩP exceeds the drift compressional mode 

frequency ΩM. However, ΩM grows almost linearly with 

m, whereas ΩP slowly decreases with increasing m. At a 

certain critical azimuthal wave number value mc, 

frequencies of these two branches become equal, the 

branches merge and form two new modes, also known 

as drift-coupling modes. The real parts of the frequency 

for both coupling modes are the same, but the sign of 

the imaginary parts are opposite: one of the coupling 

modes is damped, the other is unstable. With a further 

increase in the azimuthal wave number, the stable and 

unstable coupling modes merge again, forming the 

Alfvén and drift-compressional modes. Nonetheless, the 

Alfvén wave frequency here is lower than that of the 

drift-compressional mode. 

 

4.5. Drift-mirror mode 

The drift-compressional mode is the simplest 

compressional mode in an inhomogeneous plasma since its 

existence requires only a finite plasma pressure and 

plasma inhomogeneity. Along with it, one more 

compressional mode is widely discussed in 

magnetospheric physics, the drift-mirror mode. Its 

existence requires plasma pressure anisotropy (inequality 

 

Figure 20. Frequency dependence of coupled Alfvén and 

drift-compressional modes on the azimuthal wave number 

[Mager and Klimushkin, 2017]: 1 is an Alfvén mode; 2 is a 

drift-compressional mode; 3 is a drift-coupling mode, the real 

part of the frequency; 4 and 5, a drift-coupling mode, the 

imaginary part of the frequency; 4 is an increasing mode; 5 is a 

decreasing mode 

 

of longitudinal and transverse pressures). 

To study this mode, return to dispersion equation 

(95), but consider the opposite limit d, ,k    

sometimes called the mirror approximation. Then, the 

resonance term in (94) is rewritten as 
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(95) is reduced to the form 
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The mode determined by dispersion equation (103) is 

called the drift-mirror mode. It was first obtained by 

Hasegawa [1969]. The real and imaginary parts of this 

mode frequency are 

Re ,   (107) 

   (108) 

(the correct expression for the real part of the frequency 

was first obtained by Pokhotelov and Pilipenko [1976]). 

When the condition τ<0 holds, a so-called mirror 

instability arises. Write down the instability-condition 

explicitly: 

1
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It is seen that for the development of this instability the 

transverse pressure must exceed the parallel. Moreover, 

the instability threshold decreases with increasing 

pressure. The finite electron pressure and the finite 

Larmor radius of ions significantly influence the mirror 

instability development [Pokhotelov et al., 2000; 

Pokhotelov et al., 2005; Klimushkin and Chen, 2006; 

Feygin and Khabazin, 2014]. 

For β~1, coupling with the Alfvén mode greatly 

affects the mirror instability [Lin and Parks, 1978; 

Migliuolo, 1983; Pokhotelov et al., 1985; Woch et al., 

1988]. In this case, the instability growth rate, instead of 

(108), takes the form 
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where 1 1/ 2( )     [Klimushkin and Mager, 

2012]. As seen from (110), when the coupling is taken 
into account, the mirror instability is possible even for 
positive τ value. If there are no cold electrons in the 
plasma, dispersion relation (103) is replaced by 
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where eh e i/i V m m  is the ion sound velocity, ehV  

is the parallel thermal velocity of electrons [Klimushkin 
and Kostarev, 2012]. In the isotropic pressure case (τ=1), 
this relation coincides with dispersion relation of slow 
magnetic sound (45). When τ<0, the square of the 
frequency becomes negative, i.e. one of the dispersion 
equation roots corresponds to instability. This instability 
may be called quasi-hydrodynamic mirror instability, in 
contrast to the kinetic mirror by Hasegawa [1969]. The 
threshold of these two mirror instability types coincides 
(τ<0), but their character is much different. If the instability 
condition is not met, then the kinetic mirror mode is 
damped, while mode (111) oscillates, like a slow 
magnetoacoustic wave. Since there is always a certain 
fraction of cold electrons in the magnetosphere, the quasi-
hydrodynamic mirror instability most likely cannot exist 
there, yet it can exist in the transition layer. 

In contrast to the drift compressional mode, the theory 

of drift-mirror instability was developed only for a 

longitudinally homogeneous plasma. Several attempts 

have been made to extend this theory to the dipole-like 

magnetic field case [Pilipenko and Pokhotelov, 1977; 

Cheng and Lin, 1987; Cheng and Qian, 1994]. However, 

none of them dealt with the possibility of changing the 

sign of τ along the field line. Near the equator, the mirror 

instability condition τ<0 is satisfied. Nonetheless, when 

moving along field lines, the value of τ inevitably passes 

through zero, then becomes positive, and rapidly tends to 

unity (Figure 21). Indeed, the plasma pressure is constant 

along the field line, while the magnetic pressure increases 

due to the convergence of field lines near the ionosphere. 

The properties of oscillation modes that may exist in this 

case have not been studied yet. Until this problem is 

being solved, it seems impossible to talk about the 

possibility of mirror mode existence in the 

magnetosphere. 

5. EXPERIMENTAL DATA 

 ON SMALL-SCALE AZIMUTHAL 

WAVE GENERATION  

 BY INSTABILITIES 

It is currently assumed that instabilities associated 

with the wave-particle energy transfer generate 

azimuthally small-scale ULF waves, mostly poloidal or 

compressional. Some evidence argues in favor of 

generation of azimuthally small-scale waves by 

energetic particles, especially protons. The evidence 

includes the statistical correlation between observations 

of these waves and intensifications of the ring current 

[Anderson, 1993; Yeoman et al., 2000] and the 

similarity between the spatial distribution of these 

waves and proton drift trajectories [Takahashi, 1996]. 

The shielding effect of the atmosphere prevents the 

electromagnetic field of these waves from penetration to 

Earth's surface (the exception is the so-called giant 

pulsations (Pgs), which have moderately large 

azimuthal wave numbers 20m ). Standard techniques 

for observing azimuthally small-scale waves involve 

spacecraft and radars. The first examples of waves with 

m>>1 observed using these methods were given 

respectively in [Cummings et al., 1969] and [Allan et 

al., 1982; Walker et al., 1982]. Other methods for 

studying these waves include pulsations of the riometric 

absorption [Beharrell et al., 2010; Moiseev et al., 2020], 

the ionospheric total electron content measured with 

Global Navigation Satellite System receivers [Watson et 

al., 2016; Zhai et al., 2021], and optical data [Motoba et 

al., 2015; Baddeley et al., 2017]. 

5.1. Poloidal Alfvén modes 

To determine the type of instability generating a 

wave in a particular case, it is necessary to answer the 

following questions: (1) whether the observed mode is 

Alfvén, drift compressional, or drift mirror; (2) whether 

this mode symmetric or antisymmetric about the 

equator; (3) which particles (protons or electrons) 

generate the wave; (4) what is the energy range of these 

particles; (5) whether it is drift or drift-bounce 

resonance; (6) what is the character of the instability: 

the inverted distribution function or its spatial gradient. 

Signatures of an Alfvén wave include relatively high 

frequency and a regular, quasi-sinusoidal form of pulsa-

tions since the frequency of an Alfvén wave is 

determined mainly by its magnetic shell L. Another 

observational aspect of the Alfvén mode is a small 

(although not necessarily evanescently small) 

compressional component of the magnetic field. The 

first example of a wave with the resolved question about 

 

Figure 21. Parameter τ as a function of length along the 

field line l 
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the nature of the instability might have been found by 

Hughes et al. [1978]. The second harmonic ( N=2) of a 

standing wave was observed, which excludes the 

possibility of the drift resonance. The wave generation is 

likely to be related to the drift-bounce resonance with K=1. 

The proton distribution function F(ε) featured a clear 

inverse segment at the 1 to 10 keV energy range. A 

number of later works present other examples of the 

Alfvén waves with N=2 in the drift-bounce resonance with 

1–10 keV protons with the inverse distribution function 

[Hughes et al., 1979; Wright et al., 2001; Baddeley et al., 

2002; Liu et al., 2013; Takahashi et al., 2018b]. 

This mechanism does seem to be quite common. 

Statistical research by Baddeley et al. [2004] and 

Baddeley et al. [2005] show that in most cases the 

inverse instability of protons in the 10–45 keV energy 

range is responsible for the generation of poloidal 

Alfvén waves with m>>1. The resonance is drift-

bounce, and Alfvén waves have N=2. The free energy 

of particles in this range exceeds 10
10

 J. Besides, the 

populations of particles observed simultaneously with 

poloidal Alfvén waves have higher free energy than that 

in average conditions. 

There are, however, cases not consistent with this 
scenario. A case where the fundamental harmonic was 
in the drift resonance with of 80 keV protons is 
described by Mager et al. [2018]. The wave was 
generated by the inverse instability (Figure 22). It was 
observed in the region of the poloidal frequency 
maximum at the outer edge of the plasmapause. The 
oscillation is likely to be a superposition of several (at 
least two) harmonics of the transverse Alfvén resonator, 
which was discussed in Subsection 3.4. Of particular 
note is also the case from [Glassmeier et al., 1999]. A 
poloidal wave was observed simultaneously with an 
inverse distribution function of protons with energies of 
about 60 keV. The most interesting detail is that for 
such parameters drift-bounce resonance condition (20) 
gives a non-integer bounce harmonic number K .  The 
authors attribute this to the asymmetry of the wave 
relative to the equator. This is possible if the boundary 
conditions at the southern and northern points of 
intersection of a field line with the ionosphere are 
contrastingly different. This assumption sparked a 
discussion [Mann and Chisham, 2000; Glassmeier, 2000], 
which is however beyond the scope of this review. 

The inverse instability hypothesis is supported by the 

fact that poloidal Alfvén waves are often registered 

simultaneously with substorm-injected particles reaching 

an azimuth of the observation point [Chisham et al., 1992; 

Wright et al., 2001]. Indeed, the dispersion of drift 

velocities of particles entering the magnetosphere in a 

single injection is among the inverse energy distribution 

formation mechanisms, as it was mentioned in Subsection 

4.1. However, we should be cautious in this case. 

Simultaneous onset of pulsations and injected particles 

may be a manifestation of a completely different wave 

generation mechanism: a moving source (Subsection 3.5). 

These two mechanisms are especially easy to confuse since 

the azimuthal wave number of an oscillation excited by a 

moving source also satisfy the drift resonance condition, 

although its physical meaning is different. 

 

Figure 22. Inverse proton distribution function for a case 

described in [Mager et al., 2018] 

A number of examples of Alfvén waves generated 

by the gradient instability have been found relatively 

recently. Dai et al. [2013] and Takahashi et al. [2018a] 

studied fundamental harmonics (N=1) generated by drift 

resonance with protons with energies of about 90 and 

140 keV respectively. Min et al. [2017], Oimatsu et al. 

[2018], Mager [2021], Rubtsov et al. [2021] examined 

the second harmonic of standing waves (N=2) that were 

in the drift-bounce resonance with protons of 80, 120–

180, and 46 keV respectively. In all these four cases, the 

waves propagated westward, in the proton drift 

direction, like the majority of azimuthal small-scale 

waves. However, an eastward-propagating wave (N=2) 

was studied by Yamamoto et al. [2019]. Propagating in 

the electron drift direction, the wave was, nevertheless, 

in the drift-bounce resonance with the 10–30 keV 

proton population that formed a gradient instability. 

Finally, an interesting example of an Alfvén wave was 

examined by Wei et al. [2019]: both inverse and 

gradient instabilities were responsible for the mode 

excitation at different time intervals. A second harmonic 

was observed with drift-bounce resonance and 

resonance energy of protons of about 10 keV. 

 

5.2. Drift compressional modes 

As we mentioned above, drift compressional modes 

are the most typical compressional modes in 

magnetospheric plasma since their existence requires 

only a finite plasma pressure and plasma 

inhomogeneity. A distinctive feature of this mode is a 

large parallel component of the magnetic field 

(comparable to or greater than the transverse 

components). The total magnetic field and plasma 

pressure oscillate in antiphase (diamagnetism). Since 
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the frequency of the drift compressional mode depends 

not only on the L-shell, but also on the azimuthal wave 

number, we should expect its spectrum to be wider than 

those of Alfvén waves. Its frequency can be 

significantly lower than the Alfvén frequency at the 

same magnetic shell. Such waves should be narrowly 

localized around the geomagnetic equator. 

The storm time compressional Pc5 waves first 

distinguished by Barfield and McPherron [1972] fit 

these properties. Irregular Ps6 or Pi3 pulsations might 

also have this nature [Vaivads et al., 2001; Yagova et 

al., 2021]. The Pc5 pulsations have the longest periods 

of all ULF oscillations. They exhibit a diamagnetic 

property and often feature a non-sinusoidal profile with 

localization near the equator [Takahashi et al., 1987; 

Higuchi and Kokubun, 1988]. Thus, it seems reasonable 

to identify these waves with the drift compressional 

mode [Crabtree and Chen, 2004; Mager et al., 2013]. 

There are more compelling reasons for this 

interpretation. Chelpanov et al. [2016] studied a Pc5 

pulsation with varying frequency and azimuthal wave 

number. The frequency depended on the m number 

approximately linearly (Figure 23), as expected for the 

drift compressional modes. As shown by Chelpanov et 

al. [2018], such modes can be typical for the night-time 

magnetosphere: frequencies of Pc5 pulsations are 

generally several times lower than Alfvén frequencies at 

the same L-shells. 

There is experimental evidence for the generation of 

the drift compressional modes by the gradient 

instability. As mentioned above, this requires an 

increase in the average energy of protons with distance 

from Earth. Such behavior was found for compressional 

Pc5 pulsations studied in [Rubtsov et al., 2018; Mager 

et al., 2019]. In both cases, frequencies of the observed 

waves were significantly lower than Alfvén frequencies 

at the magnetic shells where the oscillations were 

registered. This provides additional basis for identifying 

these waves as drift compressional modes. 

The possibility of generating ULF waves due to the 

coupling of the Alfvén and drift compressional modes 

was shown by Mager et al. [2015]. These authors 

observed two modes with different frequencies and 

azimuthal wave numbers simultaneously, using a radar. 

When |m| was below 30, these modes with the same 

azimuthal wave number were discernible. The higher 

frequency almost did not depend on the m value, 

whereas the lower one increased with m. As the 

azimuthal wave numbers exceeded 30, these two 

branches merged, and a single mode was observed. This 

behavior is peculiar for the coupled Alfvén and drift 

compressional modes (Subsection 4.4). 

 

5.3. Drift-mirror modes 

Early experimental studies of magnetospheric 

compressional waves, when the drift compressional 

mode was not yet known, usually dealt with the drift-

mirror mode [Lanzerotti et al., 1969; Woch et al., 1990]. 

However, for this mode, in addition to the finite pressure 

and plasma inhomogeneity, one more condition is 

required: the transverse plasma pressure should be 

significantly higher than the parallel one (the τ 

parameter should be negative). Indeed, several examples 

of Pc5 compressional waves satisfying this criterion 

have been found [Rae et al., 2007; Tian et al., 2020; 

Cooper et al., 2021]. Yet one should be cautious of 

identifying the observed waves with drift-mirror modes 

since the entire theory of these modes was developed 

for the case of longitudinally homogeneous plasma. A 

more realistic dipole case involves a problem of 

changing the sign of the τ parameter along a field line, 

which we discuss in the latter part of Subsection 4.5. 

The lack of theory that takes this factor into account 

limits further discussion of the drift-mirror mode 

existence in Earth's magnetosphere. On the other hand, 

pressure anisotropy can be an additional factor 

contributing to the drift compressional mode generation.  

 

6.  MODULATION  

OF CHARGED PARTICLE FLUXES 

In the case of resonant interaction of waves with 

energetic particles, the distribution function of these 

particles is modulated (perturbed) in its rather narrow 

part near the resonance energy in a special way. The 

differential particle flux  , ,J r   is usually measured 

by satellites, i.e. the particle flux through a unit area at a 

given energy ε, pitch angle α and position in space .r  

The differential flux is related to the velocity-

distribution function (phase space distribution, PSD) 

   , , ,F r F r    by simple relation 

   
2

, , , , .J r F r
M

        (112) 

Besides the differential flux J, the differential energy 

flux Jε =εJ and the omnidirectional differential flux, i.e. 

the flux integrated over the entire solid angle Ω, are 

often used. In space physics, the following units of 

measurement of the listed quantities are usually applied: 

s
3
/km

6 
for the velocity distribution function F; 

1/(s·cm
2
·sr·keV) for the differential particle flux; and 

keV/(s·cm
2
·sr·keV) for the differential energy flux. 

 

 

Figure 23. Frequency versus azimuthal wave number for 

the event described in [Chelpanov et al., 2016] 
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Let δF and δJ be the perturbations of the distribution 

function and flow caused by the particle-wave 

interaction, and F and J be their unperturbed values. In 

practice, according to satellite data, δJ and J are 

separated from the observed flow by filtering as slow 

and fast components. To analyze the flux modulation by 

a wave, it is convenient to use the ratio δJ/J=δF/F. 

According to the theory developed by Chen and 

Hasegawa [1991], within the gyrokinetic framework the 

perturbation of the distribution function can be 

represented as 

 a exp ,F F K k        (113)  

where the term with δK is the resonant perturbation, δFa 

is the nonresonant (adiabatic) distribution function 

perturbation, and   is the particle gyroradius. In the 

vicinity of resonance energy εr, the resonant 

perturbation significantly exceeds the adiabatic one, and 

we can assume that 

 exp ,F K k      (114) 

where the term with δK satisfies gyrokinetic equation 

 d
ˆ ,i m K i SQF

l

 
       

 (115) 

where  

d ,S m q B      (116) 

and 

0

eq

ˆ .
F m c F

QF
qB L L

 
 
  

 (117) 

Here, Equation (115) is written in approximation 

1,k  i.e. the transverse wavelength is considered to 

be much larger than the particle gyroradius. Besides, it 

is assumed that the parallel electric field of the wave is 

absent. 

A complete solution of Equation (115) is given in 

[Chen and Hasegawa, 1991]. Let us present an 

approximate solution valid in the vicinity of the 

resonance, d bm K    : 

s d
ˆ ˆ( ) ,K K K      (118) 

where ˆ / ,   

1 1

s

d b

cos cos
ˆ ,

l l

l lI S I
K QF

m K


  

   
 (119) 

1 1

d

d b

sin cos
ˆ ,

l l

l lI S I
K iQF

m K


  

   
 (120) 

the bar denotes averaging over the bounce period 

   
2

1
b

2
... ... ,

l

l

dl

 

 (121) 

l1 and l2 are the reflection points of a particle during 

bounce motion, 

 
1

1
d .

l
l

l
l

dl
I m


    (122) 

Let us single out two main cases of wave-particle 

resonance: the drift resonance with the fundamental 

longitudinal harmonic of the wave, which has a 

distribution of the transverse potential Ф symmetric about 

the equator, and the drift-bounce resonance at K=±1 with 

the second harmonic asymmetric about the equator. 

 

6.1. Drift resonance 

For the drift resonance with the fundamental 

harmonic, the particle flux modulation or the 

distribution function near the geomagnetic equator (l=0) 

is determined by expression 

 
d

ˆ
exp ,

J F S QF
k

J F m F


  
    

 
 (123) 

It follows from this expression that the maximum 

amplitude of oscillations of the particle flux δJ is 

achieved at dm   , i.e. at a certain resonant pair of 

values of energy εres and pitch angle αres. This is because 

the angular drift velocity of the particles d  depends on 

the energy and the pitch angle of the particles (see (15)). 

Note that for fixed α=αres, the δJ flux oscillations at 

energies above and below the resonant energy εres occur 

in antiphase since, when passing through the resonant 

energy εres, the denominator dm   in expression 

(123) changes sign. Similarly, if we fix the energy 

ε=εres, the flux oscillation phase is changed by 180° 

when passing through the resonant pitch angle αres. 

In practice, it is most useful to know the phase 

relationships between oscillations of the wave electric 

or magnetic field and oscillations of the particle flux at 

different energies and pitch angles. This allows us to 

determine the resonant energy of particles. Suppose that 

the wave parallel magnetic field is small or absent. This 

corresponds to Alfvén waves in most cases. Let the 

particles interacting with the wave be protons, then 

ωd<0, and hence m<0. We also assume that 0 ,i    

where ω0 is the wave frequency, and 0  is the 

instability growth rate. Then, in the instability case the 

condition ˆ 0QF   holds (see Subsection 4.1). The 

azimuthal component of the Alfvén wave electric field 

is a ,E im    hence 

 a

d

exp .
iE

J k
m

   
 

 (124) 

Thus, the phase difference Δϕ between Ea and δJ at a fixed 

pitch angle α varies depending on the particle energy as  

res

res

res

/ 2

/ 2 .

k

k

k







     



     

     

 (125) 

If we do not take into account the small correction 

due to the finite k  value, at resonance energy εres 
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the particle flux oscillations are in phase with the 

wave electric field azimuthal component Ea. This 

phase behavior is a hallmark of drift resonance. 

Knowing the phase relations between Ea and δJ 

(125), it is easy to find the same relations with the 

wave magnetic field radial component Br and δJ. At 

resonance energy εres, the phase difference between 

Br and δJ is / 2 k     . The sign depends on 

the location of the magnetic field measurement 

relative to the magnetic equator since Br is 

asymmetric about the equator, unlike Ea. Note that in 

the case of the drift resonance with energetic 

electrons, phase relations (125) remain the same. 

However, for electrons ωd>0, and therefore the drift 

resonance is possible for waves with m>0. 

An example of the modulation of proton fluxes at the 

drift resonance with a wave, with the amplitude and phase 

behavior corresponding to the drift resonance, is given in 

Figure 24. Similar examples can also be found in [Dai et 

al., 2013; Rubtsov et al., 2018; Takahashi et al., 2018a]. 

 

Figure 24. Oscillations of the proton flux δJ for different 

energies at a drift resonance with an Alfvén wave and the 

corresponding phase difference Δϕ between δJ and the wave 

electric field azimuthal component Ea for the event described 

in [Mager et al., 2018]. For this event, the wave was a 

superposition of harmonics close in frequency (13.6 and 15.3 

MHz) of the transverse resonator for Alfvén waves (see 

Section 3.4) 

 

 

6.2. Drift-bounce resonance 

For the drift-bounce resonance at K=±1 with the 

second harmonic, modulations of the particle flux or the 

distribution function near the geomagnetic equator (l=0) 

are determined by expression [Chen and Hasegawa, 

1994] 

 

0

d b

0

0

sin
ˆ

ˆ
exp ,

lS IJ F
iK

J F m K

QF
k

F


 
   

   

  

 (126) 

where the bar denotes averaging over the bounce period 

in the form 

   
2

0
b

4
... ... .

l dl

 

 (127) 

As for the drift resonance, it follows from expression 

(126) that the maximum amplitude of the particle flux 

δJ oscillations is achieved at resonance, that is, at a 

given resonance pair of energy εres and pitch angle αres. 

Besides, the phase of δF oscillations changes by 180° 

when passing through the resonant energy at a fixed 

pitch angle. The same happens when passing through 

the resonant pitch angle if we fix the particle energy. 

However, there are also significant differences from the 

drift resonance case. Since the sign of expression (126) 

depends on the sign of the parallel velocity of particles 

̂ , the particle flux oscillations with pitch angle α are in 

antiphase to the particle flux oscillations with a 

conjugate pitch angle 180°−α. In addition, there are no 

particle flux oscillations with a pitch angle α=90° since 

the second harmonic Φ and B  are equal to zero at the 

equator. 
Let us find the phase relations between the particle 

flux oscillations and the wave magnetic field 
oscillations, namely, the radial component Br. It is more 
convenient to use a magnetic rather than electric field 
here since at the equator the electric field of the second 
harmonic is zero and changes sign, whereas the 
magnetic field has a maximum amplitude. As in the drift 
resonance case, we assume that the wave parallel 
magnetic field is absent, the particles are protons, ωd<0, 

m<0, 0,  ˆ 0.Q   Since r / ,B m l    

 
d d

ˆ exp .rB
J iK k

m K
     

   
 (128) 

Thus, the phase difference Δϕ between Br and δJ at a 

fixed pitch angle α changes as follows depending on the 

particle energy 

 

 

res

res

res

ˆ 2 / 2

ˆ 1 / 2 .

ˆ / 2

K k

K k

K k







        



        


     

 (129) 

It can be seen that if we do not take into account ,k  

at resonance energy εres the particle flux oscillations are 

in phase or antiphase with the wave magnetic field 
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radial component Br, depending on the type of drift-

bounce resonance (K=±1) and the direction of the 

parallel particle velocity ( ˆ 1   for particles with α<90° 

and ˆ 1    for particles with α>90°). Examples of the 

proton flux modulation at the drift-bounce resonance 

with a wave can be found in [Liu et al., 2013; Le et al., 

2017; Min et al., 2017; Takahashi et al., 1990; 

Takahashi et al., 2018b; Wang et al., 2021]. The articles 

[Yang et al., 2011; Ren et al., 2016] provide examples 

of oxygen ion flux modulation. Pokhotelov et al. [2000] 

showed that the particle fluxes modulated in the drift-

bounce resonance can have an inverse effect on the 

same waves. It is the way how these authors explain the 

amplitude modulation of giant pulsations (Pg). 

 

6.3. Finite gyroradius effect  

and determination of the wave vector  

transverse component 

The resonant perturbation by the wave of the particle 

distribution function (see (114)), and, consequently, of 

the flux, depends on the angle between the wave 

propagation direction, given by the transverse wave 

vector ,k and the direction of the radius vector   

(gyroradius) drawn from the center of its rotation to the 

point where the particle is located. The gyroradius is 

usually small compared to the transverse wavelength. 

Nevertheless, the finite gyroradius effect can be used in 

practice to determine the transverse wave vector 

components ,k  that is, to find the length and the 

propagation direction of a wave resonantly interacting 

with particles. 

Let a satellite register particle fluxes with the same 

energies and pitch angles, i.e. with gyroradii equal in 

magnitude, but different in direction. Denote them by 

1  and 2  (Figure 25), and 1 2 .      This means 

that the satellite's detector registers particles whose 

gyration centers do not coincide but are at the same 

distance from the satellite in the plane transverse to the 

magnetic field (see Figure 25). As follows from 

Equation (114), the phase difference between 

oscillations of particle fluxes with different gyroradius 

directions is 

12 1 2 2 1.k k          (130) 

For example, if two particle fluxes with equal 

energies and pitch angles are known, but rotation 

centers of one particle flux (1) are located to the east of 

the satellite, and those of other flux (2) are to the west 

(see Figure 25),  

12 a2 ,k    (131) 

where ka is the wave vector azimuthal component. If the 

measurements were carried out close to the geomagnetic 

equator, where ka=m/L, we can estimate the azimuthal 

wave number  

12 .
2

L
m





 (132) 

 

 
Figure 25. Diagram illustrating registration of protons by 

a satellite detector. Here, 
a

e  and 
r

e are unit vectors in the 

direction of azimuthal and radial coordinates respectively 

In the same way, it is possible to determine the wave 

vector radial component kr if we find the phase 

difference of the particle fluxes with rotation centers 

located on the Earth-satellite line on the opposite sides 

relative to the satellite. 

Examples of using this method for calculating the 

azimuthal wave number can be found in [Su et al., 1977; 

Lin et al., 1988; Min et al., 2017; Takahashi et al., 

2018b]. 

 

CONCLUSION 

Studies of the interaction between long-period ULF 

waves and particles date back to the mid-1960s 

[Dungey, 1964; Falthammar, 1965] and continued 

extensively in subsequent years. The important 

milestones in this field were the introduction of the 

concept of particle diffusion in a stochastic field of ULF 

waves [Falthammar, 1968; Brizard and Chan, 2001; 

Shprits et al., 2008]; revealing the role of these waves in 

the acceleration of ring current and radiation belt 

particles [Baker et al., 1987; Rostoker et al., 1998]; the 

elaboration of an idea of wave generation by plasma 

instabilities, caused by resonant energy transfer from 

high-energy particles [Mikhailovskii and Fridman, 

1967; Hasegawa, 1969; Southwood et al., 1969; 

Mikhailovskii and Pokhotelov, 1975, 1976; Southwood, 

1976; Hughes et al., 1978]. 

Both theory and experiment advanced significantly 

in the last decade. A remarkable progress was made in 

the theory of the ULF wave generation by plasma 

instabilities [Mager et al., 2013; Mager and Klimushkin, 

2017; Yamakawa et al., 2020]. Evidence for the 

generation of azimuthally small-scale Alfvén waves by 

such instabilities was obtained from spacecraft 

observations [Dai et al., 2013; Liu et al., 2013; Min et 

al., 2017; Mager et al., 2018; Takahashi et al., 2018a, b; 

Oimatsu et al., 2018; Yamamoto et al., 2019; Wei et al., 

2019]. The existence of drift compressional waves in 

the magnetosphere was confirmed [Chelpanov et al., 

2016, 2018; Rubtsov et al., 2018; Mager et al., 2019]. 

The ability of ULF waves to efficiently accelerate 

particles in the ring current and radiation belts was 

demonstrated [Zong et al., 2009, 2012, 2017; Mann et 

al., 2013; Claudepierre et al., 2013; Foster et al., 2015; 

Hao et al., 2014, 2019; Ren et al., 2017; Ren et al., 
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2019; Simms et al., 2021]. Understanding the structure 

of the radiation belts caused by diffusion across 

magnetic shells related to wave-particle resonance 

underwent significant advances [Ozeke et al., 2012, 

2018; Mann et al., 2012; Su et al., 2015; Lejosne and 

Kollmann, 2020]. Methods of simulation of particle 

motion in the electromagnetic field of ULF waves were 

improved [Gubar', 2010; Degeling et al., 2019; Rankin 

et al., 2020]. 

In conclusion of this review, we note several 

unresolved issues in the theory of interaction of ULF 

waves and particles in the magnetosphere. 

1. What is the role of the compressional component 

of the magnetic field and the parallel electric field of the 

wave in the energy exchange between the Alfvén wave 

and particles? It is currently assumed that in Equation 

(18) only the second term, the azimuthal component of 

the electric field, Ea, is responsible for this exchange. 

The compressional component of the magnetic field B  

and the parallel electric field Е  are considered 

negligible. This concept originates from one-fluid 

magnetohydrodynamics, where a parallel electric field 

is assumed to vanish identically, and the magnetic field 

of the Alfvén wave does not have the compressional 

component (unlike magnetic sound). However, as was 

discussed in Subsection 3.2, the Alfvén wave has a 

noticeable compressional component B  in an 

inhomogeneous plasma with curved field lines. Moreover, 

accounting for the kinetic effects and the field line 

curvature the Alfvén wave reveals a significant parallel 

electric field Е  [Kostarev et al., 2021]. 

These fields can also contribute to energetic particle 

acceleration. However, these factors were not 

systematically taken into account. 

2. The mechanisms of particle acceleration in 

radiation belts can be either resonant or nonresonant, 

and the resonant acceleration can be either difiusional or 

nondifiusional. The relative contribution of these 

mechanisms is unclear. The possibility of particle 

acceleration by azimuthally small-scale waves deserves 

special attention because these waves have a significant 

azimuthal component of the electric field and often 

feature a compressional part. Nonetheless, these waves 

do not meet the drift resonance condition. Thus, 

comprehensive studies of nonresonant mechanisms of 

particle acceleration by azimuthally small-scale waves 

are required. In addition, it is necessary to develop a 

more detailed theory of particle acceleration by 

nonstationary ULF waves with the finite extension in 

the azimuthal direction. Their precise frequency w and 

azimuthal wave number m are not defined in a strict 

sense. Therefore, in this case the distinction between 

resonant and nonresonant mechanisms blurs. 

3. To date, the relative role of ULF and VLF waves 

(whistlers, chorus) in the acceleration of electrons in 

radiation belts remains unclear. There is both theoretical 

and experimental data on each of these mechanisms. At 

the same time, evidence is accumulated that the 

acceleration of electrons to relativistic energies requires 

the joint action of both mechanisms [O'Brien et al., 

2003; Li et al., 2005; Simms et al., 2021]. For example, 

Pilipenko et al. [2017] considered a two-stage process: 

first, electrons are accelerated by ULF waves and (due 

to diffusion) are transferred to the inner regions of the 

magnetosphere, where they undergo the action of VLF 

waves, which finally accelerate them to relativistic 

energies. Simms et al. [2021] have presented arguments 

in favor of the reverse sequence: first, particles are 

accelerated by VLF chorus, then the ULF waves carry 

them deep into the magnetosphere, accelerating about 

the required energies; at the same time, ULF waves 

have a stronger effect on the electron flux increase than 

UHF waves. Finally, in the magnetic pumping 

mechanism [Liu et al., 1999], VLF waves lead to pitch-

angular diffusion of particles, due to which the drift 

velocity of particles constantly changes and conditions 

for continuous energy transfer to particles from ULF 

waves are fulfilled. All these mechanisms, however, 

have so far been considered mainly at the qualitative 

level and need deeper theoretical study. 

4. The theory of the wave generation by interaction 

with high-energy particles is developed for the case of 

stationary energetic particle distribution, which does not 

depend on the azimuthal coordinate. However, the real 

magnetosphere does not meet these conditions, first 

because the particle motion can be influenced by the 

electric convection field, which is axially asymmetric. 

Second, energetic particles can cluster in substorm-

injected clouds and move in the azimuthal direction, 

generating waves in accordance with the moving source 

theory (see Subsection 4.5). Aspects of wave generation 

under these conditions are far from clear. 

5. The common identification of wave origin as 
external or internal may not fully be consistent with the 
available data. Hao et al. [2014]; Zong et al. [2017]; 
Hao et al. [2019] show that an impulse impact on the 
magnetosphere can lead to a generation of poloidal 
waves with m>>1, which subsequently participate in 
radiation belt electron acceleration. To explain this 
phenomenon, a mechanism for the generation of 
poloidal Alfvén waves at the plasmapause has been 
proposed [Zong et al., 2018]. However, the attribution 
of all these events to the plasmapause is questionable. 
Global Pc5 pulsations featuring practically the same 
amplitudes across large sections of Earth's surface 
during remarkably long time intervals (up to tens of 
hours) also worth mentioning here [Potapov et al., 
2006]. Such waves exhibit a noticeable correlation with 
the solar wind velocity, which hints at their external 
sources. Nonetheless, there is data on their moderate to 
high azimuthal wave numbers [Potapov et al., 2011], 
widely thought as an indication of internal sources. In 
addition, global Pc5 pulsations play a significant role in 
magnetic storm development, which indicates their role 
in charged particle acceleration. On the other hand, 
statistics reveal that low-m toroidal waves are observed 
mainly in the auroral oval region [Kozyreva et al., 
2016], although the generation of such waves and the 
formation of the oval seem to be unrelated. Could 
energetic particles be responsible for the generation of 
some low-m toroidal waves at the auroral oval region? 

6. The theory of drift compression waves in Earth's 

magnetosphere is far from complete. In particular, we 



Interaction of the long-period ULF waves and charged particle 

59 

do not know their structure across magnetic shells, the 

role of space plasma external currents in their 

generation, aspects that influence the coupling of these 

waves with the Alfvén mode. Without answering these 

questions, reliable identification of drift compression 

waves in the magnetosphere is impossible. 

7. The role of pressure anisotropy in the 

magnetospheric wave generation seems to be poorly 

studied. Anisotropy is generally believed to be 

responsible for the drift-mirror mode generation. 

However, the theory of drift-mirror waves is developed 

only for longitudinally homogeneous plasma. As 

discussed in Subsection 4.5, the presence of a parallel 

magnetic field inhomogeneity can modify conditions for 

the mirror instability. At the same time, the pressure 

anisotropy is a natural result of the magnetospheric 

plasma convection. Taking it into account this factor 

seems to be fundamentally important for understanding 

the generation of magnetospheric waves due to transfer 

of energy from particles to waves. 

The reported study was funded by RFBR, project 

number 20-15-50241. The authors are indebted to O.V. 

Mager and A.V. Rubtsov for discussion and comments. 
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