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Abstract. The paper describes application of stand-

ard gain calibration using redundancy for a 48-antenna 

prototype of Siberian Radioheliograph. Traditionally, 

for calibration, the visibilities were measured only be-

tween adjacent antennas since they have the highest 

signal-to-noise ratio and are sufficient for phase calibra-

tion. We have shown that this limited set of visibilities 

did not allow using the antenna array redundancy poten-

tial and obtaining images with a high dynamic range on 

a permanent basis. Images without amplitude calibration 

contain many artifacts and require special care when 

analyzed. The inclusion of visibility measurement be-

tween antennas with a double step made it possible to 

significantly increase the accuracy of solving the system 

of equations for amplitudes. Images constructed using 

both phase and amplitude calibrations do not have visi-

ble artifacts and are more reliable. 

Keywords: solar radio telescope, visibility function, 

radio interferometer, gain calibration. 
 

 

 

 

 

 

INTRODUCTION 

Current problems of solar radio astronomy, such as 

the study of weak activity, place ever higher demands 

on the quality of images. Expanding the dynamic range 

and increasing the fidelity of radio interferometer imag-

es require us to improve calibration and data deconvolu-

tion (such as CLEAN etc.) methods. Calibration of 

complex gains, which distort visibilities measured by an 

interferometer, is a high-priority task in radio imaging. 

The choice of a particular method depends on the in-

strument and the object under observation. For stellar 

radio interferometers with high sensitivity and small 

angles of view the most acceptable calibration method is 

to observe well-known stable point sources. The rough 

calibration result is then, as a rule, refined using self-

calibration [Cornwell, Fomalont, 1989]. 
When designing the Siberian Radio Heliograph 

(SRH) [Altyntsev et al., 2020] and its 48-antenna pro-
totype (SRH-48) [Lesovoi et al., 2012; Lesovoi et al., 
2017], it was taken into account that it is impossible to 
observe point sources because of insufficient sensitivi-
ty, and self-calibration is difficult when observing the 
quiet Sun as it requires selecting a model of brightness 
distribution over the solar disk. For these reasons and 
in view of the existing infrastructure of the Siberian 
Solar Radio Telescope (SSRT) [Grechnev, 2003], re-
dundant T-shaped array configurations were chosen. 
Redundancy means the presence of several antenna 
pairs measuring the same component of the spatial 
spectrum of brightness distribution. Calibration with 
redundancy does not require additional observations of 
well-known stable sources, and also does not require 
fitting the model of brightness distribution over the 
solar disk. The first works on calibration with redun-
dancy were carried out for the Westerbork Synthesis 

Radio Telescope (WSRT) [Noordam, de Bruyn, 1982; 
Wieringa, 1992], and then this method was successful-
ly applied to the Nobeyama Radioheliograph [Nakaji-
ma et al., 1994]. 

SRH-48 was in operation from 2016 to 2021. The 

data obtained until 2020 was mainly used with phase 

correction only. Phase errors most strongly affect an 

image. This is due to the fact that at the same phase and 

amplitude measurement accuracy (say, 10 %) the distor-

tions caused by phase errors reduce the dynamic range 

of an image much more dramatically. On the other 

hand, amplitude errors are usually smaller than phase 

errors, so only phase correction is sufficient for ade-

quate imaging. To get images with a large dynamic 

range, it is also necessary to make amplitude correction. 
We describe a method of calibration with redundan-

cy in general terms and its application to SRH-48. The 

amplitude correction is shown to be impossible without 

measuring visibilities with a double step. We illustrate 

the result using simulated and actual SRH-48 data. 
 

METHOD OF CALIBRATION 
WITH REDUNDANCY 

In general, the visibilities measured by each pair of 

interferometer antennas can be written as follows: 

( ) ( ) ( ) ( ) ( ) ( ) є ( ),kl k l kl kl kl klV t g t g t G t V t t t    (1) 

where klV  is the visibility measured by antennas k and l; 

Vkl is the true visibility; gk is the complex gain of the kth 

antenna; Gkl is the measured visibility error unresolved into 

factors associated with antennas; εkl is the additive constant 

component for the antenna pair k and l; ϵkl is thermal noise 

with zero mean [Thompson et al., 2003; Cornwell, Fo-

malont, 1989]. Ignoring the errors related to a particular 
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antenna pair k, l, we write the equation for visibility in a 

simplified form: 

( ) ( ) ( ) ( ) є ( ).kl k l kl klV t g t g t V t t   (2) 

Calibration is reduced to solving system of equations 

(2) for g. The number of equations usually exceeds mani-

fold the number of unknowns, and all possible redundant 

visibilities are involved in the solution to reduce the ef-

fect of noise. To simplify further analysis, we will con-

sider the signal-to-noise ratio high enough to neglect the 

terms ϵkl. 
The simplest method for solving system of equations 

(2) is to take the logarithm of all values, which allows 

us to write independent linear equations for phases and 

amplitudes [Wieringa, 1992; Liu et al., 2010]. Antenna 

gains and visibilities can be represented as 

( ) ( )
( ) ,k ka t i t

kg t e
 

  (3) 

( ) ( )
( ) .kl klS t i t

klV t e
 

  (4) 

Then expression (2), after taking the logarithm, is as 

follows: 

( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( )).

kl kl k l kl

k l kl

S t i t a t a t S t

i t t t

     

   
 (5) 

This form makes it possible to separate equations for 

phases and amplitudes and perform calibration inde-

pendently: 

( ) ( ) ( ) ( ),kl k l klt t t t      (6) 

( ) ( ) ( ) ( ).kl k l klS t a t a t S t    (7) 
 

PECULIARITIES OF APPLICATION  

OF CALIBRATION 
WITH REDUNDANCY TO SRH-48 

The use of antenna array redundancy implies that a 

system of equations will include "redundant" visibilities, 

i.e. visibilities measured by manifold different but 

equally spaced antenna pairs. SRH-48 is a T-shaped 

equidistant antenna array with the shortest baseline of 

4.9 m, consisting of East–West (32 antennas) and South 

(16 antennas) arms. For imaging, "cross" visibilities, i.e. 

visibilities measured by antennas of different arms, are 

used. Redundant visibilities are measured only for cali-

bration. The arms do not have common antennas, since 

they intersect in half baseline; therefore, systems of 

equations for these arms are independent. Routine phase 

calibration involves solving two systems of equations 

for redundant visibilities and then correcting cross visi-

bilities, using antenna phases found. The maximum pos-

sible number of equations for one arm is N(N−1)/2, 

where N is the number of antennas in the arm. The cali-

bration source for SRH-48 is the Sun itself since the 

sensitivity of SRH-48 is insufficient to observe cosmic 

point sources. For the solution to be stable, the visibili-

ties included in the system of equations should be 

measured with an acceptable signal-to-noise ratio s /n >5 

[Wieringa, 1992; Hjellming, Basart, 1982]. The solar 

disk has a decaying spatial spectrum; therefore, the sig-

nal level in different antenna pairs depends on the base-

line distance. The strongest signal is generally recorded 

at the shortest baselines; and with an increase in the 

baseline, the signal level decreases sharply; therefore, 

for phase calibration of SRH-48, only the visibilities 

measured by pairs of adjacent antennas are used. The 

number of measured visibilities is also limited to hard-

ware resources of the SRH-48 correlator. The number of 

equations when using only the shortest baselines is 

N−1. We show below that such a limited set of equa-

tions gives an acceptable imaging solution for phases, 

but for amplitudes an additional set of equations is 

needed. 
By way of illustration, consider an array of four an-

tennas located along one line with equal spacing. Using 

this array as an example, we describe the calibration 

method employed for SRH-48. Set up a system of equa-

tions of the form of (6) for the shortest baselines, i.e. for 

l=k+1. Only one unique visibility phase, denoted by ψ, 

will be included in the system of equations. Write the 

system of equations for phases in the matrix form 

1

2 12

3 23

4 34

1 1 0 0 1

0 1 1 0 1 .

0 0 1 1 1

 
 
     

                  
  

 (8) 

Denoting the matrix of coefficients by P1, the vector 

of unknown phases by x, and the resulting vector by d, 

expression (8) can be written shorter: P1x=d. Obvious-

ly, system (8) has an infinite set of solutions as it con-

tains five unknowns and three equations. In other words, 

there is a vector or a family of null-space vectors P1. 

This means that when multiplying such a vector with 

the matrix P1 the resulting vector will be zero. Hence, 

when added to the found solution of system of equations 

(8), this vector will have no effect. The family of null-

space vectors P1 takes the form 

1

2

3 1 2

4

1 1

1 2

1 3 ,

1 4

0 1

С С

     
     
     
       
     
     

         

 (9) 

where C1 and C2 are arbitrary constants. Addition of the 

first part of vector (9) to the solution (C1 ≠0; C2=0) cor-

responds to addition of a constant to all phases of anten-

na gains, which does not play a role in correcting the 

visibilities measured along one arm since there are only 

phase differences in (8). But, as mentioned above, SRH-

48 consists of two arms that do not have common an-

tennas, and in solutions for different arms the constants 

C1 will generally be different. This will lead to constant 

addition to phases of cross-visibilities, which will be 

manifested in "skew" of brightness across the solar disk 

and the sky in the image plane. This degeneracy can be 

eliminated by analyzing the image and its histogram, or 

by adding an equation for the shortest cross-visibility 

and binding the two sets of equations together into one. 

However, the latter method requires an assumption 
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about the cross-visibility phase, which can also be a 

source of error. The second part of vector (9) (C1=0; 

C2 ≠0) corresponds to introducing a linear slope into phas-

es of antenna gains, which, during subsequent correction of 

cross visibilities, will lead to a shift of the entire image 

relative to the phase center. This does not affect the dy-

namic range of the image and is eliminated during further 

processing by the procedure for centering of the solar disk. 
Apply this method to amplitude calibration. The system 

of equations for our example of an array of four antennas 

will be similar to system (8), except for the signs: 

1

122

3 23

4 34

1 1 0 0 1

0 1 1 0 1 .

0 0 1 1 1

а

Sа

а S

а S

S

 
                       
 
 

 (10) 

Denote the matrix by A1. The family of null-space 

vectors A1, as in the case of P1 for phases, consists of 

two parts: 

1

2

3 1 2

4

1 1

1 1

1 1 .

1 1

2 0

a

a

a C C

a

S

     
     
     
       
     
     

         

 (11) 

Remember that in this case we deal with logarithms 

of amplitudes, so the addition actually means multiplica-

tion. Adding the first part of vector (11) to the solution is 

equivalent to multiplying moduli of gains of all antennas 

by an arbitrary constant and simultaneously dividing the 

amplitude of true visibility by the square of this constant. 

Consequently, during the correction all cross-visibilities 

are multiplied by the same arbitrary factors actually con-

sisting of two factors for different arms, which entails a 

change in the integral over the image corresponding to 

the total solar flux at this frequency. The image is related 

to the total flux during further processing by referencing 

the brightness temperature of the solar disk to a known 

value. For this reason, multiplying visibilities by a con-

stant does not affect the image quality. Adding the second 

part of vector (11) to the solution means multiplying 

moduli of gains of all antennas with even indices and 

dividing the moduli of gains of all antennas with odd 

indices by a constant, which give rise to a comb on the 

spectral plane (uv plane). The comb in the spectrum am-

plifies the farthest side lobes and produces false images 

that may overlap with the real image. 
A solution containing such degeneracy severely lim-

its the dynamic range of an image. When analyzing the 

left-hand side of vector (11), we can see that the comb-

like degeneracy arises due to the fact that in (10) we 

always deal with the sum of logarithms of moduli of 

gains of two adjacent antennas. Hence we can assume 

that adding equations for double-spaced antenna pairs 

(1–3 and 2–4) would remove this degeneracy. Add two 

new equations to system (10). A new unknown visibility 

amplitude also appears, designated S1 for the shortest 

baselines and S2 for double baselines. 

1
12

2
23

3

34

4

13
1

24
2

1 1 0 0 1 0

0 1 1 0 1 0

0 0 1 1 1 0 .

1 0 1 0 0 1

0 1 0 1 0 1

a
S

a
S

a
S

a
S

S
S

S

   
    
    
    
     
    
             

 (12) 

The form of the null-space vector clearly implies 

that now only the constant remains as the only possible 

degeneracy. 

1

2

3

4

1

2

1

1

1
.

1

2

2

a

a

a
C

a

S

S

   
   
   
   

   
   
   
        

 (13) 

As mentioned above, the presence of a constant in 

visibilities is of no import, so now the solution for am-

plitudes may be considered accurate. 
Note that the additional equations radically change 

the accuracy of the amplitude calibration, and for phases 

the equations with double baselines have no effect on 

vector (9). This is due to the fact that the additional 

equations for phases are not linearly independent. 

Moreover, in order to solve a system with equations for 

different baseline distances, the logarithmic approach 

requires phase unwrapping such that the behavior of the 

right-hand side of equation (6) is linear. At a wide 

spread of antenna gain phases, as well as at different 

values of solar visibility phases, this might be difficult. 

In such cases, it is preferable to use nonlinear methods 

and to solve the system of equations of type (2) in a 

complex form, although they need more computational 

resources. 
For the above reasons, the choice of equations only 

for the shortest baselines, in view of their highest signal-

to-noise ratio for phase calibration of SRH-48 data, 

seems optimal. Amplitude calibration requires the addi-

tional use of equations for double baselines. Note, how-

ever, that the signal level in double baselines may 

change significantly over time. Figure 1 illustrates the 

behavior of the visibility function modulus for the 

shortest double baselines, measured at different fre-

quencies from the beginning of the observations to the 

noon. These baselines measure the low-frequency part 

of the spatial spectrum, where the response to the solar 

disk dominates. In the domain of spatial frequencies, the 

response to the circular disk is the Airy disk — the Bes-

sel function of the first kind divided by its argument. 

During the day, the position of the baseline vector on 

the spectral plane changes and at some moments gets 

close to the first and second zeros of the Bessel func-

tion. This causes the signal-to-noise ratio to drop below 

5, and visibilities become unsuitable for calibration. For 

such cases, it is preferable to use the calibration ob-

tained at the nearest moment in time, when all visibili-

ties in the system of equations have a sufficient signal-

to-noise ratio. 
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Figure 1. Signal level variation in different baselines of the East–West and South arms from the beginning of observations to 

noon for May 10, 2020. Blue color marks 4375 MHz; orange, 7700 MHz. For each curve, minimum and maximum values of the 

signal-to-noise ratio are given. 
 

AMPLITUDE CALIBRATION 
OF SRH-48 DATA 

The result described in the previous section can be 

shown by simulated data representing the computed 

components of the spatial spectrum of the solar model, 

which correspond to cross and redundant antenna pairs 

for a particular point in time. Each spectral component 

is multiplied by specified complex gains measuring this 

component. The above calibration method is applied to 

the resulting set of visibilities to calculate antenna gains 

and restore the original spectral components. Figure 2 

presents the result of calculation of gains for 32 anten-

nas of the East–West arm. The comb appears explicitly 

when the original moduli of antenna gains are divided 

by the gain moduli calculated using only the shortest 

baselines. When we add equations for double baselines, 

only a constant remains. 
Redundant visibilities for double-spaced antenna 

pairs have been recorded by SRH-48 from March 9, 

2020. Previously recorded data was generally used 

without amplitude calibration. Figure 3 illustrates the 

effect of amplitude calibration of the data on a solar 

image and its histogram, used for referencing to bright-

ness temperatures. Images are shown in the coordinate 

system of direction cosines (l, m). The solar images 

forming at adjacent maxima of the SRH-48 beam have 

the opposite sign due to the array configuration. Images 

with phase and amplitude correction for short baselines 

exhibit artifacts that distort images and their histograms. 

This reduces the accuracy of referencing brightness 

temperatures of the disk and determining brightness 

temperatures of sources. At higher frequencies, disk 

temperature distortions may be even greater since arti-

facts overlap with the true image. The last image, ob-

tained using amplitude calibration for short and double 

baselines, does not contain such artifacts. This means 

that the image is close to convolution with an ideal 

beam and the CLEAN algorithm works more accurately. 

Figure 4 shows dirty and clean images of the quiet Sun, 

taken on May 3, 2020 at 6125 MHz. Cleaning an ex-

tended object such as the Sun is a separate challenge 

and is beyond the scope of this work. In this case, a 

simple algorithm of subtracting the response to the disk 

and cleaning the remaining bright areas with the 

Högbom algorithm was adopted [Högbom, 1974]. By 

comparison, we present an image for the same day ob-

tained by SDO/AIA at a wavelength of 304 Å. The dy-

namic range of SRH-48 images is 50:1 and 156:1 re-

spectively. Without amplitude calibration and cleaning, 

the dynamic range is 5:1. Figure 5 gives an example of 

cleaning a bright source during an M1.2 class flare 

without amplitude calibration (left) and with amplitude 

calibration (right). The image obtained using only phase 

correction contains many residual side lobes. Amplitude 

calibration suppresses side lobes and increases the dy-

namic range six times. Of particular note is that without 

amplitude calibration the antenna temperature of a  
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Figure 2. Result of amplitude calibration simulation. Left: dots connected by the red dotted line are original moduli of anten-

na gains; pluses connected by the green dotted line are calculated antenna amplitudes for only short baselines; triangles connect-

ed by the blue dotted line are their quotient indicating that the solution differs from the initial values by a constant and a comb. 

Right: the same for the solution with addition of double baselines 

 

Figure 3. Effect of amplitude calibration on an image. An image after phase calibration (left); an image after phase and am-

plitude calibrations using only the shortest baselines (center); an image after phase and amplitude calibrations using the shortest 

and double baselines (right); under each image are their histograms. The images were captured on March 14, 2020 at 4300 MHz 

 

Figure 4. Solar images for May 3, 2020. A dirty image obtained at a frequency of 6125 MHz after phase and amplitude cali-

brations (left); the same image after cleaning bright sources and the disk (center); an SDO/AIA image at a wavelength of 304 Å 

(right). Size of the SRH-48 beam is shown in the lower left corner. Accumulation time is 15 s 
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Figure 5. Clean images of an M1.2-class flare on May 29, 2020 at 07:22 UT at 4375 MHz. A phase-corrected image (left); a 

phase- and amplitude-corrected image (right). Accumulation time is 0.14 s. The maximum antenna temperature of the flare 

source is 492·103 K and 605·103 K respectively. The dynamic range is 47:1 and 290:1 respectively 
 

source is underestimated by 18 %. There is more noise 

in the images than in Figure 4 because we use the short-

est possible accumulation time. Residual side lobes in a 

phase and amplitude calibrated image can be caused by 

high frequency harmonic distortions in visibilities (see 

Figure 1) of hardware origin. 

 

CONCLUSION 

In this paper, we have implemented a method of 

amplitude calibration of SRH-48 antenna gains. We 

have shown analytically and using model data that cap-

turing an acceptable image requires calibration with 

visibilities measured in the shortest and double base-

lines. We have reported the result of amplitude calibra-

tion of real SRH-48 data. 

The work was carried out partly under Government 

Assignment for 2021 No. 075-00374-21-00 dated De-

cember 24, 2020 "Methods and instruments of an astro-

physical experiment" (unique number 0278-2021-0010, 

registration number TsITiS 121040600115-2); partly 

using funds of the Russian Science Foundation (project 

No. 18-12-00172). 
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