УДК 672.116 DOI:10.30987/2223-4608-2020-5-33-41

> А.А. Кощеева, аспирант (ООО «ИТ-Сервис», 443001, г. Самара, ул. Ульяновская/Ярмарочная, д. 52/55) E-mail: Koscheevaaa@its-samara.com

Влияние легирующих элементов Cr и V на коррозионную стойкость бесшовных нефтепромысловых труб из стали 13ХФА при эксплуатации в средах с повышенной концентрацией CO₂

Рассмотрено влияние легирующих элементов хрома и ванадия на стойкость бесшовных нефтепромысловых труб из стали 13ХФА в средах с повышенной концентрацией CO₂ в лабораторных и промысловых условиях. Отмечено, что, помимо легирующих элементов, важными факторами, влияющими на стойкость стали в агрессивной CO₂содержащей коррозионной среде, являются режим термической обработки и микроструктурные параметры.

Ключевые слова: углекислотная коррозия; легирующие элементы; коррозионная стойкость; нефтепромысловые трубы.

A.A. Koshcheeva, Post graduate student (PC "IT-Service", 52/55, Uliyanovskaya/Yarmarochnaya Str., Samara, 443001)

Impact of Cr and V alloying elements upon corrosion-resistance of seamless oil-field 13HFA steel pipes at operation in environments with CO₂ increased concentration

The impact of chromium and vanadium alloying elements upon durability of oil-field seamless 13HFA steel pipes in environment with increased CO_2 concentration under laboratory and industrial conditions is considered. It is emphasized that besides alloying elements the significant factors effecting steel durability in the aggressive environment having CO_2 there are thermal treatment modes and micro-structural parameters.

Keywords: carbon dioxide corrosion; alloying elements; corrosion durability; oil-field pipeline pipes.

Введение

Углекислотная коррозия является сложным процессом, на который влияет большое количество параметров, включая свойства транспортируемой среды: химический состав, температура, скорость потока, а также, физические и металлургические свойства стали: химический состав, термическая обработка, микроструктура, механические свойства и др. Особенностью СО₂-коррозии является локальный характер разрушения. Скорость роста язв и место их образования спрогнозировать сложно.

В современной научно-технической документации (НТД) предусмотрена оценка стойкости металла труб к коррозии только к H₂S-среде, что связано с отсутствием общеприня-

тых методик испытания стойкости сталей к углекислотной коррозии. Одной из широко используемой для производства бесшовных нефтепромысловых труб, помимо 09Г2С и стали 20, является сталь 13ХФА. Коррозионная стойкость бесшовных нефтепромысловых труб из стали 13ХФА в СО₂-содержащих средах обеспечивается за счет химического состава стали и соблюдения технологии изготовления труб.

Существует множество публикаций, в которых приведены исследования механизма углекислотной коррозии [1 – 3]. Большинство из них посвящено исследованию влияния характеристик среды и не предоставляет точных данных о влиянии химических элементов, входящих в состав стали, на ее стойкость к СО₂-коррозии. Для решения проблемы углекислотной коррозии, необходимо иметь достоверную информацию о механизме протекания коррозии и влиянии легирующих элементов, входящих в состав стали, на скорость коррозионного разрушения.

В работе рассмотрено влияние легирующих элементов Cr и V на стойкость стали $13X\Phi A$ в CO₂-содержащих средах, а также рассмотрен механизм разрушения нефтепромысловых бесшовных труб из стали $13X\Phi A$ в средах с повышенным значением CO₂ в процессе эксплуатации.

Лабораторное моделирование СО₂-коррозии для стали 13ХФА

Для лабораторного моделирования по исследованию влияния легирующих элементов на стойкость стали 13ХФА в СО₂-содержащей среде, были изготовлены специальные образцы и помещены в лабораторную емкость на 740 ч. Химический состав (методика измерения по ГОСТ Р 54153-2010 «Сталь. Метод атомно-эмиссионного спектрального анализа»), механические свойства, а также микроструктура (травитель 3%-ный раствор HNO₃) стали 13ХФА представлены в табл. 1, табл. 2 и на рис.1.

Рис. 1. Микроструктура металла образцов из стали 13ХФА

1. Химический состав образцов из стали 13ХФА

Magazza	Массовая концентрация, %										
маркировка	С	Si	Mn	Cr	V	Al	Р	Ni	Cu	S	
13ХФА	0,14	0,21	0,50	0,56	0,043	0,026	0,010	0,110	0,157	<0,001	
Погрешность измерения по ТУ 1317-006.1-593377520-2003											
	±0,01	±0,02	±0,02	±0,02	±0,02	±0,01	±0,003	-	-	±0,001	

2. Результаты определения механических характеристик металла образцов из стали 13ХФА

Маркировка	σ _в , МПа	σ _т , Мпа	δ, %	$\sigma_{\rm T}/\sigma_{\rm B}$	КСV-50, Дж/см ²	КСU-60, Дж/см ²	Твердость HRB
13ХФА	617	514	26,0	0,83	320,6	406,5	90,3

Микроструктура образца из стали 13ХФА представлена высокодисперсной ферритокарбидной смесью, характерной для режима «закалка + высокотемпературный отпуск».

Металл образцов обладает достаточно высокой прочностью, в сочетании с удовлетворительными показателями ударной вязкости.

При взаимодействии CO₂-содержащей среды с поверхностью метала образца, образуются продукты коррозии, которые могут быть как защитными, так и наоборот, ускорять коррозию. Согласно литературным данным [4], продукты, состоящие из гидратированных аморфных карбонатов, будут защитными. Следует отметить, что аморфные карбонаты не будут давать пиков на дифрактограмме, что также наблюдается в случае продуктов коррозии, сформировавшихся в процессе эксплуатации.

Как было отмечено выше, на защитные свойства продуктов коррозии может оказывать влияние состав стали. Зависимость скорости СО₂-коррозии от концентрации легирующих элементов [5] представлен на рис. 2.

Рис. 2. Зависимость скорости СО₂-коррозии от концентрации легирующих элементов

Внешний вид и химический состав продуктов коррозии на поверхности образца из стали 13ХФА после выдержки в СО₂-содержащей среде в течение 740 ч представлен на рис. 3, табл. 3 (химический состав был оценен в указанных на рисунках точках).

Рис. 3. Вид продуктов коррозии на поверхности образца из стали 13ХФА после выдержки в CO₂содержащей среде в течение 740 ч

3. Химический состав продуктов коррозии на поверхности образца из стали 13ХФА после выдержки в CO₂-содержащей среде в течение 740 ч

	0	V	Cr	Mn	Fe				
После испытания на стойкость к СО2-среде									
Область 1	21,02	0,45	6,59	0,65	Остальное				
Область 2	22,83	0,43	5,73	0,64	Остальное				
Область 3	19,96	1,15	14,18	1,01	Остальное				
Состав металла в состоянии поставки									
Металл	-	0,043	0,56	0,50	Остальное				

В процессе выдержки в СО₂-содержащей среде на поверхности образцов из стали 13ХФА образовался слой карбонатов (см. рис. 3) с повышенным содержанием хрома и ванадия (толщиной 150 мкм). Результаты определения химического состава, указанного выше слоя, приведены в табл. 3. Слой не имеет кристаллической структуры и является аморфным. Он предотвращает контакт металла трубы с испытательной средой. Содержание хрома и ванадия в слое повышено за счет того, что в процессе коррозии, железо, входящее в состав карбонатов, постепенно вымывается из слоя, в то время как элементы, входящие в состав нерастворимого гидроксида, сохраняются.

Также был проведен анализ внешнего вида и химического состава продуктов коррозии в сечении поверхности образца из стали 13ХФА после выдержки в СО₂-содержащей среде в течение 740 ч представлены на рис. 4, табл. 4 (химический состав был оценен в указанных на рисунках точках).

Рис. 4. Вид продуктов коррозии в сечении поверхности образца из стали 13ХФА после выдержки в СО₂содержащей среде в течение 740 ч

4. Химический состав продуктов коррозии в сечении поверхности образца из стали 13ХФА после выдержки в СО₂-содержащей среде в течение 740 ч

	Ο	Cr	Mn	Fe					
После испытания на стойкость к СО2-среде									
Область 1	8,65	5,22	0,59	Остальное					
Область 2	13,22	3,40	0,56	Остальное					
Область 3	15,43	5,42	0,30	Остальное					
Область 4	14,01	5,73	-	Остальное					
Область 5	15,43	3,98	0,31	Остальное					
Состав металла в состоянии поставки									
Металл	-	0,61	0,50	Остальное					

Таким образом, в лабораторных условиях на образце из стали 13ХФА образуется защитный аморфный слой с повышенной (на порядок) концентрацией легирующих элементов. Данный слой, за счет легирования данными элементами, предотвращает контакт внутренней поверхности трубы со средой и, следовательно, тормозит коррозионное разрушение.

Механизм коррозионного разрушения трубы в процессе эксплуатации

Приведем анализ коррозионного разрушения бесшовной нефтепромысловой трубы из стали 13ХФА, изготовленной по ТУ 14-3Р-124-2012, после 5 лет эксплуатации в промысловых средах, содержащих СО₂.

Внешний вид объекта исследования приведен на рис. 5, рис. 6.

Рис. 5. Вид наружной и внутренней поверхностей исследуемой трубы после эксплуатации в CO₂-содержащих средах

Рис. 6. Вид язвы на внутренней поверхности трубы из стали марки 13ХФА, после эксплуатации в СО₂содержащих средах

Визуальный осмотр состояния внутренней поверхности бесшовной нефтепромысловой трубы был проведен после разрезки и очистки от слоя нефтепродуктов растворителем Стоддарда. Осмотр показал следующее:

- под слоем нефти на всех исследуемых

участках трубы был выявлен слой коррозионных отложений. Слой продуктов коррозии на образце тонкий и относительно легко отделяется от поверхности;

– у объекта исследования наблюдается ассиметричная сквозная язва диаметром 1,5 см, ориентируемая под углом 120⁰ к направляющей трубы.

Химический состав и механические свойства металла объекта исследования представлены в табл. 5, табл. 6.

По результатам химического анализа металл образца-катушки соответствует стали марки 13ХФА и соответствует требованиям ТУ 14-3P-124-2012. Результаты оценки механических характеристик свидетельствуют о том, что металл трубы не соответствует требованиям ТУ 14-3P-124-2012 по значению относительного удлинения. Это может являться следствием неправильно проведенной термической обработки.

Материал трубы характеризуется невысокой загрязнённостью неметаллическими

включениями – оксидами точечными (1,0 балл) и оксидами строчечными (0,5 балл), что

соответствует требованиям ТУ 14-3Р-124-2012.

Mankunonka	Массовая концентрация, %										
таркировка	С	Si	Al	Mn	Cr	V	Ni	Cu	Р	S	
13ХФА	0,12	0,30	0,03	0,50	0,61	0,04	0,05	0,014	0,014	0,006	
Требования	0,11-0,17	0,17-0,40	0,02-0,05	0,45-0,65	0,50-0,70	0,04-0,10	не более				
ТУ 14-3Р-124-2012							0,25	0,25	0,015	0,005	
Погрешность измерения по ТУ 14-3P-124-2012	±0,01	±0,02	±0,01	±0,02	±0,02	±0,02	-	-	±0,003	±0,001	

5. Химический состав металла объекта исследования

6. Механические характеристики металла объекта исследования

Маркировка	σ _в , МПа	σ _т , Мпа	δ, %	σ_T / σ_B	КСV-50, Дж/см ²	КСU-60, Дж/см ²	Твердость HRB
	584	510	21	0,87	254	336	
13ХФА	586 496		20	0,87	270	341	90
					285	352	
ТУ 14-3Р-124-2012	min 510 max 630	min 370	min 23	max 0,9	min 98	min 59	max 92

Микроструктура материала исследуемой трубы приведена на рис. 7. Микроструктура металла представлена высокодисперсной феррито-карбидной смесью, характерной для стали 13ХФА после закалки и высокотемпературного отпуска. Структура однородна по толщине стенки, полосчатости не наблюдается.

Процесс полигонизации Карбиды

В соответствие с термокинетической диаграммой распада переохлажденного аустенита, на первом этапе закалки стали 13ХФА по границам аустенитных зерен выделяется доэвтектоидный феррит. При этом углерод и легирующие элементы, мало растворимые в феррите, будут смещаться в аустенит. При дальнейшем охлаждении аустенит превращается в бейнит. В стали 13ХФА с относительно низким содержанием углерода бейнит не будет содержать цементит и будет состоять из реек феррита и прослоек остаточного аустенита.

При отпуске протекает несколько процессов:

1. Распад прослоек аустенита на ферритокарбидную смесь, при этом карбиды будут расположены вдоль прослоек бывшего аустенита в виде цепочек. При относительно низкотемпературном отпуске карбиды будут представлены цементитом – Fe₃C и карбидом ванадия; хром в состав карбидов входить не будет.

2. Процесс полигонизации феррита, сопровождающийся уменьшением плотности дислокаций и снятием наклепа (см. рис. 7).

3. При повышении температуры отпуска, начинается процесс рекристаллизации, выражающийся в образовании и росте новых зерен феррита. Кроме того, повышение температуры отпуска приведет к обогащению карбидов Fe₃C хромом, что уменьшит его содержание в твердом растворе.

По завершению высокотемпературного отпуска структура металла трубы представлена однородными, близкими к округлым по форме, зернами феррита, по границам и внутри которых расположены карбиды. Характерная особенность микроструктуры металла исследуемой трубы заключается в слабо развитом процессе рекристаллизации. В связи с этим металл имеет высокую твердость и прочность в рамках допуска (ближе к верхнему интервалу по ТУ 14-3P-124-2012).

Исходя из вышесказанного, можно сделать вывод, что температура отпуска была относительно невысокой, что говорит о возможных остаточных внутренних напряжениях в металле трубы. Данный факт способствует снижению значения относительного удлинения. Кроме того, недостаточно эффективный отпуск может снизить ударную вязкость стали и ее стойкость к СКРН (сульфидное коррозионное растрескивание под напряжением). Следует отметить, что, несмотря на неэффективный отпуск, ударная вязкость металла, как и его коррозионная стойкость, находятся на удовлетворительном уровне.

Так как отпуск был недостаточно эффективен, следует ожидать выделения карбидов Fe₃C, не обогащенных хромом. Это способствует сохранению хрома в твердом растворе, следовательно, повышению стойкости стали к углекислотной коррозии [5].

Фазовый состав продуктов коррозии представлен окислами. Основной фазой являются оксиды железа Fe₃O₄. Отметим, что в средах, содержащих CO₂, следует ожидать наличие в продуктах коррозии и карбонатов железа. Отсутствие на дифрактограмме пиков данной фазы свидетельствует либо об ее малом количестве, либо об ее рентгеноаморфности. Рентгеноаморфные (без выраженной кристаллической структуры) карбонаты железа часто наблюдаются в защитных слоях продуктов коррозии на сталях с хромом и ванадием.

Исследования структуры продуктов коррозии проводили на шлифах, ориентированных как перпендикулярно, так и параллельно поверхности трубы.

Внешний вид приповерхностного слоя в поперечном сечении приведен на рис. 8. Слой продуктов коррозии относительно ровный и тонкий. При большем увеличении в нем можно выделить две прослойки:

1) прокатная окалина, структура которой содержит несплошности и трещины. Транспортируемая СО₂-среда попадает через эти дефекты на границу раздела «прокатная окалина – металл». При контакте среды с металлом формируется слой продуктов коррозии;

2) слой продуктов коррозии, расположен-

ный под окалиной, не имеющий кристаллической структуры и состоящий преимущественно из гидратированных (аморфных) карбонатов. Содержание хрома и ванадия в нем повышено.

Сравнительный анализ продуктов коррозии, сформировавшихся в лабораторных CO₂содержащих средах и в реальных условиях, свидетельствует о том, что содержание хрома и ванадия повышено в обоих случаях (рис. 8, рис. 9, табл. 7).

Стоит отметить возможное влияние кремния на образование аморфного слоя продуктов коррозии, выявленного с помощью характеристического рентгеновского излучения продуктов коррозии в сечении (в поперечном сечении) стенки исследуемой трубы (рис. 10). Данный элемент не образует карбидов в стали, следовательно, всегда находится в твердом растворе.

Согласно документации, труба эксплуатировалась 5 лет, но глубина проникновения коррозии на большей части исследованного образца невелика. Это подтверждает предположение о защитной природе продуктов коррозии.

Однако на отдельных участках видно разрушение аморфного слоя с формированием несплошностей и трещин (см. рис. 8, *a*). Трещины развиваются как поперек толщины слоя, так и вдоль границы раздела «металл – продукты коррозии». Глубоких коррозионных поражений под трещинами не наблюдается, что дает основание предположить, что они развились относительно недавно. Можно предположить, что растрескивание продуктов коррозии связано с неким изменением транспортируемой среды.

В трещинах обнаружены прослойки хлоридов (см. рис. 10). Это позволяет связать растрескивание с воздействием кислоты, попадающей в трубопровод после проведения геолого-технологических мероприятий на нефтедобывающих скважинах (соляно-кислотных обработок).

Важное влияние на строение приповерхностного слоя продуктов коррозии может оказать попадание соляной кислоты в транспортируемую среду. В случае повышения кислотности раствора, т.е. увеличения концентрации свободных протонов (H⁺), происходит растворение защитного гидратированного слоя карбонатов. Это и приводит к появлению каналов (трещин). Вероятно, по этим каналам идет проникновение хлорид-ионов через продукты коррозии к поверхности металла.

Рис. 8. Вид продуктов коррозии в сечении внутренней поверхности трубы из стали 13ХФА после эксплуатации в CO₂-содержащей среде:

а – слой продуктов коррозии; б – состав коррозионного слоя; в – слой прокатной окалины

Рис. 9. Внешний вид продуктов коррозии на внутренней поверхности трубы из стали 13ХФА после эксплуатации в СО₂-содержащей среде 7. Химический состав продуктов коррозии на внутренней поверхности трубы из стали 13 ХФА после эксплуатации в СО₂-содержащей среде

	0	V	Cr	Mn	Fe				
После испытания на стойкость к СО2-среде									
Область 1	20,15	0,41	6,04	0,57	Остальное				
Область 2	21,46	0,40	5,18	0,62	Остальное				
Область 3	19,54	1,09	9,13	0,92	Остальное				
Состав металла в состоянии поставки									
Металл	-	0,04	0,61	0,50	Остальное				

Таким образом, анализ образовавшихся продуктов коррозии на внутренней поверхности бесшовной нефтепромысловой трубы выявил следующее:

 на внутренней поверхности образуется защитный аморфный слой гидратированных карбонатов с повышенным содержанием хрома и ванадия, который замедляет коррозию. На большей части поверхности объекта исследования слой сохранился; слой растрескивается и разрушается, вероятно, из-за воздействия растворов, попадающих в трубопровод после солянокислотных обработок скважин.

Рис. 10. Химический состав продуктов коррозии в характеристическом рентгеновском излучении в сечении внутренней поверхности трубы из стали 13ХФА после эксплуатации в CO₂-содержащей среде

Выводы

1. Лабораторным моделированием выявлено, что в процессе выдержки образца из стали 13ХФА в СО₂-содержащей среде, образуется защитный аморфный слой с повышенной (на порядок) концентрацией хрома и ванадия. Данный слой, за счет легирования данными элементами, предотвращает контакт внутренней поверхности трубы со средой и, следовательно, тормозит коррозионное разрушение.

2. Металл бесшовной нефтепромысловой трубы соответствует требованиям ТУ 14-3Р-124-2012 по химическому составу, микроструктуре, но не соответствует требованиям по механическим характеристикам из-за заниженного значения относительного удлинения. Микроструктура металла характерна для стали 13ХФА после закалки и отпуска. Процессы рекристаллизации слаборазвиты, что свидетельствует о недостаточно эффективном отпуске, который является наиболее вероятной причиной несоответствия относительного удлинения требованиям ТУ.

При низком отпуске происходит выделение карбидов цементитного типа Fe_3C , не обогащенных хромом. Это способствует сохранению хрома в твердом растворе, что, в свою очередь, повышает стойкость стали к углекислотной коррозии (что не наблюдается при высоком отпуске – выше 600 ⁰C).

Можно предполагать, что помимо легирующих элементов, важным фактором, влияющим на стойкость стали в агрессивной СО₂-содержащей коррозионной среде, является режим термической обработки.

3. На поверхности металла исследуемой трубы, как в лабораторных, так и в промысло-

вых условиях формируется слой аморфных защитных продуктов коррозии, обогащенный хромом и ванадием. Однако данный слой может разрушаться в процессе эксплуатации. Возможно, данный факт связан с низким содержанием хрома в стали. В литературных данных отмечается, что с повышением концентрации данного элемента (до 3...5 %), значительно снижается скорость коррозии в CO₂содержащих средах [6].

Однако по результатам работы и анализа актуальных литературных данных [6] следует, что нельзя дать определенный ответ о влиянии легирующих элементов на стойкость стали в средах с повышенной концентрацией CO₂. Результаты имеют неоднозначный характер и требуют дополнительных исследований.

Для подбора оптимального химического состава стали и процентного содержания легирующих элементов, необходимо провести исследование физико-химических процессов, протекающих на границе «металл – среда» и влияние параметров транспортируемой среды (температуры, pH, химического состава), а также влияние микроструктуры и термической обработки металла.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. **Тетюева, Т.В., Иоффе А.В.** Исследование причин преждевременного выхода из строя стальных нефтегазороводных труб // Научно-технический вестник ЮКОС. – 2003. – №8. – С. 2-8.

2. Иоффе, А.В., Борисенкова, Е.А. Особенности коррозионного разрушения нефтегазопроводных труб в условиях эксплуатации Коми и Западной Сибири // Вектор науки ТГУ. – Тольятти, 2010. №4 (14).– С. 50 – 53.

3. Борисенкова, Е.А. Веревкин А.Г. и др. Современный подход к выбору материалов для изготовления нефтегазопроводных труб в зависимости от превалирующего механизма коррозии // Черная металлургия. – 2014. – №12(1380). – С. 47-51

4. **Pessu, Frederick** Oritseweneye (2015) Investigation of pitting corrosion of carbon steel in sweet and sour oilfield corrosion conditions: a parametric study. PhD thesis, University of Leeds.

5. **M.B. Kermani and A. Morshed** "Carbon Dioxide Corrosion in Oil and Gas Production – A Compendium", Corrosion, Vol. 59, 2003, pp. 659-683.

6. **Yoon-Seok Choi, Srdjan Nesic** «Effect of Alloying Elements on the Corrosion Behavior of Carbon Steel in CO2 Environments», CORROSION. – 2018, – 2-13.

REFERENCES

1. Tetyueva, T.V., Ioffe A.V. Reasons analysis of oil-gas pipeline pipe premature failure // *Science-Technical Bulletin of YuKOS.* – 2003. – No.8. – pp. 2-8.

2. Ioffe, A.V., Borisenkova, E.A. Peculiarities of oil-gas pipeline pipe corrosion destruction under operation conditions in Komy and Western Siberia // *Science Vector of TSU.* – Togliatti, 2010. No.4 (14). – pp. 50-53.

3. Borisenkova, E.A., Verevkin A.G. et al. Current approach to material choice for manufacturing pipes depending on prevailing corrosion mechanism // *Ferrous Metallurgy*. – 2014. – No.12 (1380). – pp. 47-51.

4. Pessu, Frederick Oritseweneye (2015) Investigation of pitting corrosion of carbon steel in sweet and sour oilfield corrosion conditions: a parametric study. PhD thesis, University of Leeds.

5. M.B. Kermani and A. Morshed "Carbon Dioxide Corrosion in Oil and Gas Production – A Compendium", Corrosion, Vol. 59, 2003, pp. 659-683.

6. Yoon-Seok Choi, Srdjan Nesic «Effect of Alloying Elements on the Corrosion Behavior of Carbon Steel in CO2 Environments», CORROSION. – 2018, – 2-13.

Рецензент д.т.н. М.Г. Шалыгин

