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Abstract. We have studied propagation of hydromag-

netic (MHD) waves in one-dimensionally inhomogene-

ous finite pressure plasma with curved field lines. Mag-

netic surfaces are considered to be concentric cylinders, 

where the cylinder’s radius models the radial coordinate 

in Earth’s magnetosphere. The waves are supposed to be 

azimuthally small-scale. In this approximation there are 

only two MHD modes — Alfvén and slow magnetosonic 

(SMS). We have derived an ordinary differential equa-

tion for the spatial structure of the wave field in this 

model. We have examined the character of the singularity 

on the surface of Alfvén and SMS resonances and the in-

fluence of field line curvature on them. We have deter-

mined wave transparent regions. The SMS transparent re-

gion was found to essentially broaden as compared to the 

straight field line case. The very existence of the Alfvén 

transparent region is caused by the field line curvature 

and finite plasma pressure; otherwise, the wave structure 

is represented by a localized resonance. 
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INTRODUCTION 

Ultra-low frequency (ULF) waves with large azi-

muthal wave numbers are observed in near-equatorial re-

gions of the magnetosphere, characterized by a relatively 

high plasma pressure (the ratio of plasma pressure to 

magnetic pressure β~1) and significant field line curva-

ture [Agapitov, Cheremnykh, 2011; Moiseev et al., 2016; 

Rubtsov et al., 2018a]. These waves are generated due to 

injection of high-energy particles into plasma [Gug-

lielmi, Zolotukhina, 1980; Mager, Klimushkin, 2007; 

Kostarev, Mager, 2017]. In recent years, azimuthally 

small-scale waves have been extensively studied using 

radars [Berngardt, 2017; Chelpanov et al., 2018] and sat-

ellites [Leonovich et al., 2015; Mager et al., 2018; 

Takahashi et al., 2018]. The development of the theory of 

such waves is a topical problem of space plasma physics 

because they may be responsible for the acceleration of 

charged particles in the magnetosphere [Ukhorskiy et al., 

2009] and can serve as triggers of substorms [Rae et al., 

2014]. 

As known, there are three MHD modes: Alfvén, fast 
magnetosonic (BMS), and slow magnetosonic (SMS). 
When accounting for plasma inhomogeneity, these modes 
are coupled, i.e. they cannot propagate independently of 
each other. The simplest model of the magnetosphere is a 
one-dimensionally inhomogeneous model with straight 
field lines, which takes into account only magnetospheric 
inhomogeneities across magnetic shells (box model) 
[Southwood, 1974; Chen, Hasegawa, 1974; Mazur, 
Chuiko, 2013]. This model has established the Alfvén res-
onance, the essence of which is as follows. Processes at the 
magnetospheric boundary generate a FMS wave propagat-
ing deep into the magnetosphere. On a surface located in-
side the magnetosphere, the FMS wave is reflected. Part of 
FMS energy, however, tunnels and with an exponentially 

decreasing amplitude propagates deeper into the magneto-
sphere until it reaches a magnetic surface, where its fre-
quency coincides with the local frequency of the Alfvén 
wave. On a respective magnetic surface there is a sharp 
peak of the Alfvén wave amplitude. The azimuthal wave 
electric field component as well as the radial magnetic 
field and plasma velocity components have a logarithmic 
singularity; the radial electric field component and the az-
imuthal magnetic field and velocity components, a pole 
singularity. 

This model in the case of finite pressure plasma has 

been generalized by Yumoto [1985]; the author has 

shown that in plasma with β>0 there should also be a res-

onance on a magnetic surface, where the wave frequency 

is equal to the local frequency of SMS waves. The singu-

larity on this surface appeared to be the same as on the 

Alfvén resonant surface. 

In the azimuthally small-scale limit, the FMS role can 

be ignored because its transparent region turns out to be 

localized in the immediate vicinity of the magnetopause 

and only an exponentially small part of FMS energy en-

ters the magnetosphere [Guglielmi, Potapov, 1984]. Two 

major MHD modes in this case are Alfvén and SMS cou-

pled due to the field line curvature [Southwood, Saun-

ders, 1985; Walker, 1987; Cheremnykh, Parnowski, 

2004]. The spatial structure of these modes in a two-di-

mensionally inhomogeneous magnetospheric model with 

irregular field line curvature has been studied in 

[Klimushkin, 1997; Klimushkin, 1998; Klimushkin et al., 

2004]. It has been shown that in the model there are two 

regions of mode localization — Alfvén and SMS trans-

parent regions. Each of them is bounded on one side by 

the resonant surface, where the radial wave vector com-

ponent kr becomes infinite, and by the reflecting surface, 

where kr becomes zero. In each of the transparent regions, 

kr
2>0. We have studied the wave field singularities on 
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resonant surfaces. On the Alfvén resonant surface, the 

singularity was the same as in one-dimensionally inho-

mogeneous plasma. On the SMS resonant surface, the 

singularity, however, appeared to differ from that in the 

one-dimensionally inhomogeneous model. 

It is still not quite clear to what extent we can trust the 
results obtained in [Klimushkin, 1997; Klimushkin, 
1998; Klimushkin et al., 2004] since the mathematical 
methods for studying the two-dimensionally inhomoge-
neous magnetospheric model are not sufficiently ad-
vanced. To solve these difficulties, Cheremnykh et al. 
[2014, 2016] have examined the cylinder magnetospheric 
model, which considers magnetic surfaces to be concen-
tric cylinders and takes into account only the inhomoge-
neity across the magnetic surfaces. Despite its relative 
simplicity, this model keeps such basic features of mag-
netospheric plasma as radial inhomogeneity and field line 
curvature. At the same time, it can avoid some mathemat-
ical difficulties specific to more realistic two-dimension-
ally inhomogeneous models. The cylinder model was 
also used to study MHD waves in the solar corona 
[Kaneko et al., 2015, Cheremnykh et al., 2018]. 

The main results of earlier studies [Klimushkin, 1997; 
Klimushkin, 1998, Klimushkin et al., 2004] in terms of Alf-
vén modes have been confirmed. Cheremnykh et al. [2014, 
2016] did not, however, treat the SMS spatial structure in 
detail. The questions about the match between the cylinder 
model and the one-dimensional model of the magnetosphere 
studied in [Yumoto, 1985] were not addressed either. In this 
paper, we fill this gap. 

 

1.  GENERAL EQUATION 

ULF waves are usually described using the system of 
MHD equations: 

 1
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where , ,J B  are speed, current, and magnetic field; ρ, P 

are plasma density and pressure; E  is the electric field; γ is 

the heat capacity ratio,  .
d

dt t


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 Linearizing sys-

tem (1), obtain 
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where quantities marked with 0 represent equilibrium 

values , , , , ,P J B E ; and those marked with 1, small 

deviations from equilibrium. 

Following [Cheremnykh et al., 2018], we consider the 

one-dimensionally inhomogeneous cylinder plasma 

model in which magnetic field lines are concentric circles 

and all equilibrium values depend only on the radial co-

ordinate r — circle radius (Figure 1). 

The coordinate y, directed along the system symmetry 

axis plays a role of an azimuth coordinate in the magne-

tosphere. In this model, the magnetic field B0=(0, B0φ(r), 

0) and plasma pressure P0(r) satisfy the equilibrium con-

dition 

2 2

0 0
0 .

8 4

B B
P

r r

 
  

   
  (6) 

Consider a monochromatic wave with a frequency ω. 

Due to the system symmetry in coordinates φ and y, the 

plasma velocity can be written as  

( ω φ)
1 1( , ) ( ) ,yi t k y N

r t r e
  

    

where ky is the azimuthal wave vector component, N is 

the natural number. The role of the azimuthal wave num-

ber m in the cylinder model of the magnetosphere belongs 

to m=k yr. The value k||=N/r can be regarded as an ana-

logue of the field-aligned wave vector component. 

Then motion equation (2) can be written for the com-

ponents as  
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  (7) 

Here / ,r r     and δP is the perturbation of the to-

tal pressure (the sum of plasma and magnetic pressures): 

0 1φ

1δ .
4π

B B
P P    

 

Figure 1. One-dimensionally inhomogeneous cylinder 

model 
Equation (4) yields 
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After transformations in view of (7), we get: 
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(10) are the Alfvén, sonic, and slow magnetosonic 

speeds, 
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Below we show that the frequencies ωA and ωc corre-

spond to Alfvén and SMS resonances; frequencies ω±, to 

FMS and SMS reflecting points respectively. To the azi-

muthally small-scale case corresponds ky>>k||. In this 

case, the expressions for ω± reduce to 
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If we now substitute δP from (9) in (7), we can derive 

a differential equation describing the spatial structure of 

Alfvén, FMS, and SMS waves: 

 
  
  

 

  
  

 

  

2 2 2 2

A c2 2 0 1

A s 12 2 2 2

+

2 2 2 2

A s2

0 A 2 2 2 2

+

2 2

0 A 1 0 P c 1

2 2 2 2 2

0 c A s 1

2 2 2 2

+

ω ω ω ω ρ
2

ω ω ω ω

ω ω ω ω
ρ

ω ω ω ω

ρ ω ω 2 χ χ

ρ χ ω
4 0. (14)
ω ω ω ω

r

r r r

r

r r

y r

r
r r

P

k







  
     

   

  
  

   

   

 
 

Here с ( )χ –1/r r  is the function of field line curvature, 

  0P

1

0χ rPr P   is the radial scale of plasma pressure 

variation. This equation coincides with that derived in 

[Cheremnykh et al., 2014], but is written in a more clear 

form. 

Given the radial velocity component, from Equation (9) 

we can find the total pressure perturbation δP. Next, with (7) 

the components 1φ and 1y are expressed through 1r and 

δP as follows: 
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Note that in the magnetosphere the component 1y di-

rected along the binormal to field lines plays a role of the 

azimuthal velocity component; and the component 1φ, 

a role of the field-aligned component. As readily seen from 
(15), the field-aligned velocity component in contrast to the 
radial and azimuthal components disappears when the 

plasma pressure tends to zero (i.e. when a→0). 

 

2.  ONE-DIMENSIONAL CASE:  
NEGLIGIBLE FIELD LINE  
CURVATURE  

In order to compare with the results obtained by the 
cylinder model, we consider first the case of parallel 
straight field lines (box model) discussed in [Yumoto, 

1985]. Given χ 0с  , (14) yields an equation for MHD 

modes [Yumoto, 1985]:  
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 (16)  

In this equation there are four specific points determined 
by conditions 

2 2 2 2
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The solutions of these four equations are the points with 
coordinates rc(ω), r–(ω), rA(ω), and r+ (ω) respectively. At 
small values of the parameter β and for transversely small-
scale oscillations (ky>>k||) between respective frequencies 
there are relations 

c Aω <ω ω ω .    

In this case, throughout most of the magnetosphere 

the functions 2 2 2 2

c Aω ( ), ω ( ), ω ( ), ω ( )r r r r 
 are decreasing 

[Moore et al., 1987]. Hence, the point rc should be the 
closest to Earth, followed successively by r–, rA, and r+ 
(Figure 2). 

 

Figure 2. Graphical solution of Equations (16) and mag-
netic surfaces (one-dimensional model) 
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First, examine the region
cω ω ,  

Aω ω ω ,  

corresponding to the SMS transparent region. In this re-

gion, Equation (16) reduces to the form 
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If we solve this equation in the WKB approximation, 

the radial wave vector component kr(r, ω) will be deter-

mined from 
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Figure 3 plots 2 ( ,ω)rk r  as a function of ω2. Formula 

(19) shows that at rc and r– kr becomes infinite and zero 

respectively. These points can therefore be called the 

SMS resonance point and the SMS reflecting point. The 

region between them, where 2 0,rk   may be referred to 

as the SMS transparent region. 

The applicability of the WKB approximation to the 
SMS-wave localization region deserves a separate discus-
sion. The WKB approximation can be used when a trans-
parent region covers many wavelengths. A necessary (but 
insufficient) condition of this phenomenon is the presence 
of a large parameter in a wave equation. In the case of Equa-
tion (18), the large parameter is naturally considered to be 
ky. 

As follows from (13), the very difference 2 2

cω ω   is, 

however, inversely proportional to the square of this quan-
tity: 
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Thus, with increasing ky the transparent region nar-

rows. As readily seen, the applicability condition of the 

WKB approximation has the form 

2
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A s

1,y

y

L
k

k
k



‖
  

where 𝐿 is the typical scale of radially inhomogeneous 

plasma. Thus, the WKB approximation is applicable only 

to a weakly inhomogeneous plasma when 𝐿 is very large. 

 

Figure 3. Squared wave vector component as a function of 

squared frequency in an SMS transparent region (one-dimen-

sional model) 

 

 

In the vicinity of the SMS resonance point r rc, 

we can employ the linear expansion 
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 is the 

typical scale of magnetospheric parameter variations. 

The lc value is of the same order as L. Then, Equation 

(18) takes the form 
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Here  
2

1
2 c

c c 2 2

c

ω
λ

ω ω
yk l








 is the SMS wave length near 

the resonant surface (point) rc. The solution of this equa-

tion is zero-order Bessel functions 
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where 1  and 2  are arbitrary constants. Write the as-

ymptotic behavior of this solution for cc λ :r r   

c

1
c

ln .
λ

r

r r
 (22) 

Thus, in the immediate vicinity of rc the solution has 
a logarithmic singularity. This point is the SMS reso-
nance point. When bypassing the logarithmic singularity 
to r–rc<0 there occurs a jump iπ/2:  

c
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π
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r

r r i
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With (15) it is easy to determine the behavior of the 
other two plasma velocity components too. The field-
aligned (along the external magnetic field) velocity com-
ponent has a pole singularity: 
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 directed along 

the binormal to magnetic shells: 
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have the singularities: 
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Now find the solution near the SMS reflecting point 

r– when cω ω ω .  In this case, Equation (18) can be 

transformed into 
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Here, it is denoted 
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where a– and b– are constants, Ai and Bi are Airy func-

tions of the first and second kinds. Dashes denote r-de-

rivatives. Thus, the presence of the singularity at r– in wave 

equation (16) does not lead to a solution singularity. 

In the region of Alfvén wave localization when 

A с +ω ω and ω ω ω ,  general equation (15) re-

duces to the form 

   

 

2 2

A 1

2 2

A 1

2 2ω ω

ω ω 0.

r r r y

r

r

r

k k    

   

‖
 (26) 

Expanding  2
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get the equation 

 2

1 1 1

A

2 21
0r r r r y r

r
k

r
k     


‖

 (27) 

representing a modified zero-order Bessel equation. Its 

general solution is 

  
  

1 0 A

2

A

2 2

0

2

,

r y

y

I r r

K r r

k k

k k





  

  


‖

‖

 (28) 

where I0(z), K0(z) are modified Bessel functions, ,   

are arbitrary constants. In the vicinity of the Alfvén reso-
nance, this solution has a logarithmic singularity 

 2

1

2

Aln .r yk k r r 
 ‖

 (29) 

According to the singularity bypass rule, the analytic 
continuation of this solution to the region r<rA has the 
form: 

 2 2

1 Aln π.r y r ik k r  
 


‖

 (30) 

The azimuthal velocity component 1y has a pole sin-

gularity: 

1

A

1
,r

r r
  

whereas the longitudinal component 1φ  has no singular-

ities. 

Finally, at a sufficiently high frequency of  Aω ω  

Equation (16) reduces to the form 
2 2

A s

0 1 0 12 2

+

ρ ρ 0.
ω ω ( )

r r r r
r


   


 (31) 

When this equation is solved in the WKB approxima-

tion, the squared radial wave vector component is defined 

by the expression 

 2 2

A s

2
2 2 2 .

ω
r yk k k  


‖

 (32) 

This expression is derived directly from the disper-
sion equation for FMS [Southwood, 1974]. From (32) we 
can see that the point r+, where the equality 

2 2

+ω ω ( ) 0r   holds, is the FMS reflecting point be-

cause at this point the radial wave vector component be-
comes zero. 

Examine the solution near this point in more detail. 

Expanding 2

+ω ( )r  in series in rr+ , 

 2 2 2 2

+ + +ω ω ( ) ω ( ) ω ,
r r

r r r r
l



 



        

get 

 2 3

1 1 1

+

1
λ 0,r r r r rr r

r r



      


 (33) 

where 
2

3 1

2 2

A s

ω
λ .l  

 


 A solution of (33) will be 

1 .
λ λ

r

r r r r
a Ai b Bi 

 

 

    
       
   

 (34) 

This solution is regular. As in the case of the SMS 
reflecting point, the presence of the singularity in the 
wave equation does not lead to a solution singularity. 

 

3.  AZIMUTHALLY 

 SMALL-SCALE WAVES  

 IN THE CYLINDER MODEL 

Cheremnykh et al. [2014] have derived a differential 
equation used to find the spatial structure of SMS and 
Alfvén modes. The question about the SMS spatial struc-
ture was not, however, completely answered. Address 
this question in more detail. 

In the azimuthally small-scale case (when yk k
‖

), 

the wave frequency is much smaller than the FMS reflect-

ing one: +ω ω . Then, differential equation (14) takes 

the form 

  
 

  

  

2 2 2 2

A c 0

12 2

2 2 2 22
A sA

1 02 2 2 2

A s

2 2 2 2

1 22

12 2

ω ω ω ω ρ

ω ω

ω ω ω ω2
ρ

ω ω

ω ω ω ω
0.

ω ω

r r r

r r

y r

r
r

r

k







  
   

  

  
   

   

 
 



 (35) 

Here ω1,2 is the solution of the biquadratic equation 

 p c2 2 2 2 2 2 2

A 0 c c

0

χ χ
ω ω 2 ω ω 4χ ω 0.

ρ
P 

 
     

 
   

Write an expression for ω1.2: 

 

   

1,2

2 2 2 2

p c c

2
2 2 2 2 2 2 4 4

p p c

2

c c c

ω ω 4 χ

ω ω 8 ω ω χ 16 χ

1
ω

2

,



 




 


   


 (36) 



Spatial structure of azimuthally small-scale MHD waves… 

55 

� 

where it is denoted 

 2 2

p A 0 0 p cω ω 2 ρ χ χ .P   (37) 

Expression (35) is in complete agreement with the 

equation obtained in [Cheremnykh et al., 2014] for cou-

pled Alfvén and SMS modes. 

If the plasma pressure is not very high and the condi-

tion  
2

cβ χ / 1,k
‖

 holds, the frequencies ω1,2 can be 

written in the approximate form: 

2 2

2 2 c c

1 c p2

A

2 2 2 2 2 2 2 2

2 A c c A c p p c c

χ
ω ω 1 4 χ ,

ω

ω ω 4χ β χ χ ω 4χ .

 
  

 

    

 (38) 

Hence, the frequency ω1 is closer to the SMS resonant 

frequency ωc; and ω2, to the Alfvén resonant frequency ωA. 

From these formulas we can also see that the frequency ω1 

has always been lower than the SMS resonant one, ω1<ωc. 

However, the frequency ω2 may be both higher and lower 

than the Alfvén resonant frequency. 

First, we consider the solution of this equation in the 

WKB approximation. The squared radial wave vector com-

ponent is determined from the relation 

 
 

 

 

 

2 2 2 2

1 22 2

2 2 2 2

c A

ω ω ω ω
,ω .

ω ω ω ω
r y

r r
k r k

r r

       
 

       

 (39) 

As we can see, when equalities   

   1 2ω=ω , ω=ωr r  (40) 

hold, the radial wave vector component becomes zero. 
Hence, the frequencies ω1 and ω2 represent reflecting fre-
quencies of SMS and Alfvén modes respectively. The 
points r1 and r2 as solutions of (39) will be called reflect-
ing points of SMS and Alfvén modes respectively. Since 
throughout most of the magnetosphere the functions 
ωc(r), ωA(r), and ω1,2(r) are decreasing, there is always 
the inequality r1<rc. In the case of ωA<2, rA<r2; in the op-
posite case of ωA>ω 2, rA>r2 (Figure 4). 

Figure 5 plots the squared radial wave vector compo-

nent  2

rk r  as a function of the squared frequency ω2. 

Panel a corresponds to ωA<ω2; panel b, to ωA >ω2. 
Numerals I and II denote areas of propagation of SMS 

and Аlfvén waves respectively. Numeral III refers to fre-

quencies at which wave propagation is impossible. Accord-

ingly, the SMS transparent region is in the range r1<r< rc; 

the Alfvén mode transparent region, in the range rA<r<r2 (a) 

and r2< r<rA (b). 
For the Alfvén transparent region the resonant surface 

rA is also referred to as the toroidal surface; the reflecting 
surface r2, as the poloidal surface [Leonovich, Mazur, 
1993]. When kr→∞, field lines seem to slide over unper-
turbed magnetic surfaces (cylinders in our case); and 
when kr=0 they oscillate along the normal to magnetic 
shells. 

If an opacity region is much wider than the transpar-

ent regions of each of the modes, Equation (35) allows 

for a further simplification in the Alfvén and SMS trans-

parent regions. Consider the Alfvén transparent region in 

the case of A 2ω ω ω  and A 2 c 1ω ω ω, , ω  for large 

values of ky. Then Equation (35) reduces to the  

 

Figure 4. Graphical solution of Equations (40) and mag-

netic surfaces rc(ω), r1(ω), rA(ω), r2(ω) (the last one is shown in 

two cases: ωA < ω2 and ωA > ω2) 

 

Figure 5. Squared radial wave vector component as a func-

tion of squared frequency 2. When , A and c  2

rk r  

have a discontinuity from – to , and when passing through 

points 
2

1ω and 
2

2ω  the function  2

rk r  changes sign 

 2 < 0rk r  

 

form 

2 2 2 2 2

A 1 2 1ω ω ( ) ω ω ( ) 0,r r r y rr k r             (41) 

which coincides with the equation for the Alfvén mode 

derived in [Cheremnykh et al., 2014]. Since the authors 

have carried out a sufficiently detailed analysis of the so-

lution of this equation, we do not dwell on it. We note 

only that near the resonant surface there is still the loga-

rithmic singularity of the wave field as in the one-dimen-

sional case: 

A A

1 1φ

A A

ln , ln ,
λ λ

r

r r r r 
  

where 

   2 2 2 2 2 2

A A A 2 A A A A Aλ ω ω ω , ω ω .yk l l r         The 

azimuthal velocity component 1y takes the form 

1

A

1
.y

r r
  

The electric and magnetic field components have the 

form 

A

1 0 1 0 1φ

A A

A

1 1 1φ 0

A

λ
, ln , 0,

λ

λ
0, .

A

r y

r y

r r
E E E E E

r r

E E E E
r r






 


   

Away from the resonant surface, the behavior of the 
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wave field appears, however, to be different than in the 

one-dimensional case. If in the one-dimensional case the 

Alfvén wave is an isolated resonant peak, in the curved 

geometry the solution near the resonance point is oscilla-

tory, with the wavelength decreasing as it approaches the 

singularity. This is also consistent with the results ob-

tained in [Klimushkin, 1997; Klimushkin, 1998; 

Klimushkin et al., 2004] for the two-dimensionally inho-

mogeneous magnetospheric model with variable field 

line curvature and longitudinal inhomogeneous plasma. 

In this paper, we focus mainly on the SMS transparent 

region. Consider the limiting case 
c 1ω ω ω  and 

c 1 A 2ω ω ω ,ω .,  In this case, Equation (35) reduces to 

the form 

 

 

 

 

 

 

2 2 2
c A

12 2 2 2

A s

2 2 2 2

s 12

1 12 2 2 2

ω ω 2

ω ω

ω ω ω ω
0.

ω ω ω ω

r r r

r r y r

r

rr

r r
k

r r



 

 
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   

  
    

   

 (42)  

Examine the vicinity of rc: 

c 1ω ω ω ω , ω ω .   Then Equation (42) allows for 

a further simplification: 

   2 2 2 2 2

c 1 c 1 1ω ω ω ω 0.r r r y rr k r             (43) 

Near the resonance point rrc we can expand ωc(r) in 

a power series  

     2 2 2 2 c

c c c c

c

ω ω ω ω .
r r

r r r
l

      Then dif-

ferential equation (43) becomes 

 2 2 2 2c

c 1 c 1 1

c

ω ω ω 0.r r r y r

r r
k

l


      (44) 

The solution of this equation has the form 

c c

1 1 0 2 0

c c

,
λ λ

r

r r r r
K I

    
       
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 (45) 

where it is denoted 

2 2

1 2 c 1

c c 2

c

ω ω
λ .

ω
yk l 

  

Given 
c cλr r  the solution of (45) has the same 

logarithmic singularity as in (23):  

c

1

c

ln .
λ

r

r r
 (46) 

The field-aligned and azimuthal components of the 

displacement have a pole singularity:  

c c

1φ 1

c c

λ λ
, .y

r r r r 
  

Sets of electric and magnetic fields have the form 

1 0 1 0 1φ

1 1 1φ 0

λ
, ln , 0,

λ

λ
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A

r y

c
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

 


 

The analytic continuation of this solution is: 

c

1

c

π
ln .

λ 2
r

r r
i


  (47) 

Consider now the wave field structure near the other 

boundary of the SMS transparent region — the turning 

point r1. To do this, put 
1ω ω ω ω , ω ωc    in 

Equation (42). We obtain an equation in the azimuthally 

small-scale approximation 

 

 

2 2

12 2

1 12 2

c

ω ω
0.

ω ω
r r y r

r
k

r


  


 (48) 

Using the linear expansion of the function  2

1ω r  

near the point 

     2 2 2 2 1

1 1 1 1 1 1

1

, ω ω ω ω ,
r r

r r r r r r
l

         

we obtain an Airy equation 

 2 3

1 1 1 1λ 0,r r rr r     (49) 

Where  3 2 2 2 2

1 1 1 cλ ω ω ωyk l

   Find solutions of (49): 

     1 1

1 1 1 1 1 1 1λ λ .r a Ai r r b Bi r r        (50) 

As for the point r_ (the turning point in the one-di-

mensional case), it is still a singularity of the equation for 

SMS and in the curved case, but its meaning changes. In 

the vicinity of this point, where 

c 1ω ω ω ω , ω ω ,    Equation (35) allows for a 

further simplification: 
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   


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

(51) 

If we linearly expand ω_(r) near the point r  r_, 

Equation (51) can be transformed into 
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1
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0.r r r r r

r r r r r r


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  
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 (52) 

Here it is denoted 

2 22
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


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The general solution of (52) has the form 

 1

2 22 2 ,
λ λ

r r r

r r r r
aJ bY



 

 

  
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     

 (53) 

where J2(z), Y2(z) are second-order Bessel functions; a, b 

are arbitrary constants. 

If r→r,  

 1

1 π
ln .

π 22πλ 2λ
r

r r r r
a r r b i 


 
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 (54) 
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Thus, as the point r_ is approached the wave ampli-

tude in the radial displacement component 1r  tends to a 

finite value. In the azimuthal component, the wave has, 

however, a logarithmic singularity 

1

π
ln .

22πλ 2λ
y

r rb
i

 

 
  

 
 (55) 

The azimuthal and field-aligned components of electric 

and magnetic fields take the form 

1 0
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Thus, if in the one-dimensional model the point r_ rep-

resents a reflecting point, in the curved model it is a point of 

the secondary (logarithmic) resonance. There is no analogue 

of this point in the one-dimensional model. 

 

4.  DISCUSSION 

Compare results of the analysis of the cylinder model 

with those of the one-dimensional model discussed in 

Section 2 and with those of the dipole model studied in 

[Klimushkin, 1997; Klimushkin, 1998; Klimushkin et 

al., 2004]. 

First, examine the Alfvén mode. As we saw in Section 

2, in the one-dimensional case the Alfvén mode unlike 

SMS has no reflecting surface. Since the difference 
2 2

A 2ω ω  is proportional to the plasma pressure, in the 

cylinder model, but with a cold plasma, the Alfvén mode 

has no reflecting surface either. Thus, for the Alfvén 

mode the reflecting surface exists only in the finite pres-

sure plasma with curved field lines. The resonant singu-

larity is logarithmic as in the one-dimensional model, but 

the phase jumps by π/2, not by π as in the one-dimen-

sional model. All these results check well with the results 

obtained in the dipole model of the magnetosphere, 

which takes into account inhomogeneous plasma and 

magnetic field along field lines [Klimushkin, 1997; 

Klimushkin, 1998; Klimushkin et al., 2004]. 

The situation with SMS is somewhat different. In the 

one-dimensional case, the SMS reflecting surface was 

determined by ω = ω_(r) and was located more to the 

right of the SMS resonant surface. In this case, as the az-

imuthal wave vector component ky increased, the SMS 

transparent region narrowed. In the cylinder case, the 

SMS reflecting surface was defined by ω = ω1(r). In this 

case, it is located more to the left of the SMS resonant 

surface. The difference between the SMS reflecting fre-

quency and the respective resonant frequency is deter-

mined only by plasma and magnetic field parameters and 

does not depend on ky. Thus, the SMS transparent region 

in the cylinder model is much wider than in the one-di-

mensional model. This result agrees with the results of 

the dipole model [Klimushkin, 1997; Klimushkin, 1998]. 

The behavior of the resonant singularity in SMS in 

the one-dimensional and cylinder models is the same. In 

this case, the dipole model gives different results 

[Klimushkin, 1997; Klimushkin, 1998], which is most 

likely to be its artifact. Indeed, let us turn again to Equa-

tion (42) for SMS. As already noted, the difference be-

tween ωc and ω_ in the azimuthally small-scale limit 

tends to zero. If we also neglect the differences between 

ωc and ωs, in the azimuthally small-scale limit the second 

term of this equation seems to be ignored as well. Then it 

takes the form 

 

 

2 2
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1 12 2

c

ω ω
0,

ω ω
r r r y r

r
k

r


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
 (56) 

which coincides with the equation for SMS obtained by 

the dipole model in [Klimushkin, 1997; Klimushkin, 

1998]. Obviously, the resonant singularity in Equation 

(55) has the form    1 c clnr r r r r   which differs 

from the correct result of (46)  1 cln .r r r  In addi-

tion, Equation (56) does not contain the secondary (loga-

rithmic) resonance. Thus, we can conclude that the methods 

of studying azimuthally small-scale waves in the dipole 

model used in [Klimushkin, 1997; Klimushkin, 1998] are 

too crude to examine the behavior of SMS near the resonant 

surface, although they are quite suitable for studying the 

mode near the reflecting surface.  

It should be noted that there are two questions con-
cerning the subject matter of this work, which we did not 
address in this paper. The first of them is the ballooning 
instability whose development requires curved field lines 
and finite pressure plasma [Burdo et al., 2000; Agapitov 
et al., 2006; Liu, 1997; Bhattacharjee et al., 1998; 
Golovchanskaya et al., 2006]. This instability occurs in 
the SMS branch of oscillations during a sharp decrease in 
pressure with distance from Earth [Cheremnykh, Par-
nowski, 2004; Mazur et al., 2012; Rubtsov et al., 2018b]. 
In this paper, we treat modes resistant to ballooning per-
turbations. In addition, in a collisionless plasma (plasma 
of Earth’s magnetosphere) the correct consideration of 
the finite pressure is possible only within the framework 
of kinetics when in the plasma there may exist ULF 
modes that do not occur in MHD, such as drift-compres-
sional and mirror modes [Mikhailovskii, Fridman, 1966; 
Hasegawa, 1969; Rosenbluth, 1981]. In an inhomogene-
ous plasma, these modes are coupled with the Alfvén 
ones [Chen, Hasegawa, 1991]. This coupling has been 
studied using the cylinder model in [Pokhotelov et al., 
1985; Woch et al., 1988; Klimushkin et al., 2012]; using 
a more realistic dipole model, in [Mager, Klimushkin, 
2017].  

 

CONCLUSION 

The analysis of the cylinder model for one-dimen-

sionally inhomogeneous finite pressure plasma with 

curved field lines enables us to do the following. 

1. To derive an ordinary differential equation describing 

the transverse structure of Alfvén, FMS, and SMS modes. 
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Using the WKB approximation, we have determined trans-

parent regions of these modes. 

2. To examine singularities on magnetic shells of Alfvén 

and SMS resonances in terms of field line curvature and fi-

nite pressure. In the one-dimensional case, the Alfvén wave 

is an isolated resonant peak, and in the curved geometry the 

solution near the resonance point is oscillatory, whereas the 

behavior of the resonant singularity of SMS in the one-di-

mensional and cylinder model is the same. The behavior of 

the SMS resonant singularity in the cylinder model differs 

from that in the dipole model in [Klimushkin, 1997; 

Klimushkin, 1998]. 

3. To show that the SMS behavior near the reflecting 

surface ω = ω1(r) in the cylinder model coincides with the 

behavior in the dipole model. As for the turning point in 

the one-dimensional case ω=ω_(r), in terms of field line 

curvature it becomes a point of the secondary (logarith-

mic) resonance for SMS. 

The work was performed with budgetary funding of 

Basic Research program II.12. We are grateful to P.N. 

Mager for valuable comments and suggestions. 
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